Molecular cloning of a divinyl ether synthase - Identification as a CYP74 cytochrome P-450

被引:91
作者
Itoh, A
Howe, GA [1 ]
机构
[1] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
关键词
D O I
10.1074/jbc.M008964200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipoxygenase-derived fatty acid hydroperoxides are metabolized by CYP74 cytochrome P-450s to various oxylipins that play important roles in plant growth and development. Here, we report the characterization of a Lycopersicon esculentum (tomato) cDNA whose predicted amino acid sequence defines a previously unidentified P-450 subfamily (CYP74D). The recombinant protein, expressed in Escherichia coli, displayed spectral properties of a P-450. The enzyme efficiently metabolized 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid but was poorly active against the corresponding 13-hydroperoxides. Incubation of recombinant CYP74D with 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid yielded divinyl ether fatty acids (colneleic acid and colnelenic acid, respectively), which have been implicated as plant anti-fungal toxins. This represents the first identification of a cDNA encoding a divinyl ether synthase and establishment of the enzyme as a CYP74 P-450. Genomic DNA blot analysis revealed the existence of a single divinyl ether synthase gene located on chromosome one of tomato. In tomato seedlings, root tissue was the major site of both divinyl ether synthase mRNA accumulation and enzyme activity. These results indicate that developmental expression of the divinyl ether synthase gene is an important determinant of the tissue specific synthesis of divinyl ether oxylipins.
引用
收藏
页码:3620 / 3627
页数:8
相关论文
共 62 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes [J].
Bate, NJ ;
Rothstein, SJ .
PLANT JOURNAL, 1998, 16 (05) :561-569
[3]   Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals [J].
Bergey, DR ;
Howe, GA ;
Ryan, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12053-12058
[4]   Phytooxylipins and plant defense reactions [J].
Blée, E .
PROGRESS IN LIPID RESEARCH, 1998, 37 (01) :33-72
[5]   STRUCTURE-FUNCTION FEATURES OF FLAXSEED ALLENE OXIDE SYNTHASE [J].
BRASH, AR ;
SONG, WC .
JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING, 1995, 12 (2-3) :275-282
[6]   ISOLATION AND CHARACTERIZATION OF NATURAL ALLENE OXIDES - UNSTABLE INTERMEDIATES IN THE METABOLISM OF LIPID HYDROPEROXIDES [J].
BRASH, AR ;
BAERTSCHI, SW ;
INGRAM, CD ;
HARRIS, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (10) :3382-3386
[7]   A rapid assay for the coupled cell free generation of oxylipins [J].
Caldelari, D ;
Farmer, EE .
PHYTOCHEMISTRY, 1998, 47 (04) :599-604
[8]   Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases [J].
Chapple, C .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :311-343
[9]   Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding [J].
Conconi, A ;
Miquel, M ;
Browse, JA ;
Ryan, CA .
PLANT PHYSIOLOGY, 1996, 111 (03) :797-803
[10]   BIOMIMETIC TOTAL SYNTHESIS OF COLNELEIC ACID AND ITS FUNCTION AS A LIPOXYGENASE INHIBITOR [J].
COREY, EJ ;
NAGATA, R ;
WRIGHT, SW .
TETRAHEDRON LETTERS, 1987, 28 (42) :4917-4920