High-order RKDG methods for computational electromagnetics

被引:70
作者
Chen, MH [1 ]
Cockburn, B [1 ]
Reitich, F [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
discontinuous Galerkin methods; wave propagation; Maxwell equations;
D O I
10.1007/s10915-004-4152-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new RKDG method for problems of wave propagation that achieves full high-order convergence in time and space. The novelty of the method resides in the way in which it marches in time. It uses an mth-order m-stage, low storage SSP-RK scheme which is an extension to a class of non-autonomous linear systems of a recently designed method for autonomous linear systems. This extension allows for a high-order accurate treatment of the inhomogeneous, time-dependent terms that enter the semi-discrete problem on account of the physical boundary conditions. Thus, if polynomials of degree k are used in the space discretization, the RKDG method is of overall order m = k + 1, for any k > 0. Moreover, we also show that the attainment of high-order space-time accuracy allows for an efficient implementation of post-processing techniques that can double the convergence order. We explore this issue in a one-dimensional setting and show that the superconvergence of fluxes previously observed in full space-time DG formulations is also attained in our new RKDG scheme. This allows for the construction of higher-order solutions via local interpolating polynomials. Indeed, if polynomials of degree k are used in the space discretization together with a time-marching method of order 2k + 1, a post-processed approximation of order 2k + 1 is obtained. Numerical results in one and two space dimensions are presented that confirm the predicted convergence properties.
引用
收藏
页码:205 / 226
页数:22
相关论文
共 26 条
[1]   On the construction and analysis of absorbing layers in CEM [J].
Abarbanel, S ;
Gottlieb, D .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (04) :331-340
[2]   A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems [J].
Adjerid, S ;
Massey, TC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) :5877-5897
[3]   Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J].
Berenger, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) :363-379
[4]   AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems [J].
Bleszynski, E ;
Bleszynski, M ;
Jaroszewicz, T .
RADIO SCIENCE, 1996, 31 (05) :1225-1251
[5]   A fast, high-order algorithm for the solution of surface scattering problems: Basic implementation, tests, and applications [J].
Bruno, OP ;
Kunyansky, LA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (01) :80-110
[6]   Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nystrom discretization [J].
Canino, LF ;
Ottusch, JJ ;
Stalzer, MA ;
Visher, JL ;
Wandzura, SM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (02) :627-663
[7]  
CASTILLO P, IN PRESS COMPUT METH
[8]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[9]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[10]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5