Active optical control of the terahertz reflectivity of high-resistivity semiconductors

被引:32
作者
Fekete, L
Hlinka, JY
Kadlec, F
Kuzel, P
Mounaix, P
机构
[1] Acad Sci Czech Republ, Inst Phys, Prague 18221 8, Czech Republic
[2] Univ Bordeaux 1, Ctr Phys Mol Opt & Herzienne, F-33405 Talence, France
关键词
D O I
10.1364/OL.30.001992
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically and demonstrate experimentally light-controllable terahertz reflectivity of highresistivity semiconductor wafers. Photocarriers created by interband light absorption form a thin conducting layer at the semiconductor surface, which allows the terahertz reflectivity of the element to be tuned between antireflective (R < 3 %) and highly reflective (R > 85 %) limits by means of the intensity and wavelength of the optical illumination. (c) 2005 Optical Society of America.
引用
收藏
页码:1992 / 1994
页数:3
相关论文
共 9 条
[1]  
[Anonymous], 2003, SENSING TERAHERTZ RA
[2]  
Born M., 2003, PRINCIPLES OPTICS
[3]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33
[4]  
Jackson JD., 1998, Classical Electrodynamics, V3
[5]  
Jacobsson R., 1965, PROGR OPTICS, P255
[6]   Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy [J].
Kadlec, F ;
Nemec, H ;
Kuzel, P .
PHYSICAL REVIEW B, 2004, 70 (12) :125205-1
[7]   High-performance terahertz electro-optic detector [J].
Kröll, J ;
Darmo, J ;
Unterrainer, K .
ELECTRONICS LETTERS, 2004, 40 (12) :763-764
[8]  
Kuzel P, 2000, FERROELECTRICS, V239, P949, DOI 10.1080/00150190008213308
[9]  
Nuss MC, 1998, TOP APPL PHYS, V74, P7