Magnetically driven outflows from Jovian circum-planetary accretion disks

被引:24
作者
Fendt, C
机构
[1] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[2] Astrophys Inst Potsdam, D-14482 Potsdam, Germany
关键词
ISM : jets and outflows; stars : planetary systems : formation; stars : planetary systems : protoplanetary disks;
D O I
10.1051/0004-6361:20034154
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility to launch an outflow from the close vicinity of a protoplanetary core considering a model scenario where the protoplanet surrounded by a circum-planetary accretion disk is located in a circum-stellar disk. For the circum-planetary disk accretion rate we assume. (M) over dot (cp) similar or equal to 6 x 10(-5) M-J yr(-1) implying peak disk temperatures of about 2000 K. The estimated disk ionization degree and Reynolds number allow for a sufficient coupling between the disk matter and the magnetic field. We find that the surface magnetic field strength of the protoplanet is probably not more than 10 G, indicating that the global planetary magnetosphere is dominated by the circum-planetary disk magnetic field of less than or similar to 50 G. The existence of a gap between circum-planetary disk and planet seems to be unlikely. The estimated field strength and mass flow rates allow for asymptotic outflow velocities of greater than or similar to 60 km s(-1). The overall outflow geometry will be governed by the orbital radius, resembling a hollow tube or cone perpendicular the disk. The length of the outflow built up during one orbital period is about 100 AU, depending on the outflow velocity. Outflows from circum-planetary disks may be visible in shock excited emission lines along a tube of diameter of the orbital radius and thickness of about 100 protoplanetary radii. We derive particle densities of 3000 cm(-3) in this layer. Energetically, protoplanetary outflows cannot survive the interaction with a protostellar outflow. Due to the efficient angular momentum removal by the outflow, we expect the protoplanetary outflow to influence the early planet angular momentum evolution. If this is true, planets which have produced an outflow in earlier times will rotate slower at later times. The mass evolution of the planet is, however, hardly affected as the outflow mass loss rate will be small compared to the mass accumulated by the protoplanetary core.
引用
收藏
页码:623 / 635
页数:13
相关论文
共 69 条
[1]   DYNAMICS OF BINARY-DISK INTERACTION .1. RESONANCES AND DISK GAP SIZES [J].
ARTYMOWICZ, P ;
LUBOW, SH .
ASTROPHYSICAL JOURNAL, 1994, 421 (02) :651-667
[2]   Mass flow through gaps in circumbinary disks [J].
Artymowicz, P ;
Lubow, SH .
ASTROPHYSICAL JOURNAL, 1996, 467 (02) :L77-+
[3]   A POWERFUL LOCAL SHEAR INSTABILITY IN WEAKLY MAGNETIZED DISKS .1. LINEAR-ANALYSIS [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1991, 376 (01) :214-222
[4]   Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs [J].
Bate, MR ;
Lubow, SH ;
Ogilvie, GI ;
Miller, KA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 341 (01) :213-229
[5]   A SURVEY FOR CIRCUMSTELLAR DISKS AROUND YOUNG STELLAR OBJECTS [J].
BECKWITH, SVW ;
SARGENT, AI ;
CHINI, RS ;
GUSTEN, R .
ASTRONOMICAL JOURNAL, 1990, 99 (03) :924-945
[6]  
Blackman EG, 2003, LECT NOTES PHYS, V614, P432
[7]   HYDROMAGNETIC FLOWS FROM ACCRETION DISKS AND THE PRODUCTION OF RADIO JETS [J].
BLANDFORD, RD ;
PAYNE, DG .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1982, 199 (03) :883-903
[8]   ROTATION IN T-TAURI STARS .2. CLUES FOR MAGNETIC ACTIVITY [J].
BOUVIER, J .
ASTRONOMICAL JOURNAL, 1990, 99 (03) :946-964
[9]   Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth [J].
Bryden, G ;
Chen, XM ;
Lin, DNC ;
Nelson, RP ;
Papaloizou, JCB .
ASTROPHYSICAL JOURNAL, 1999, 514 (01) :344-367
[10]   The theory of brown dwarfs and extrasolar giant planets [J].
Burrows, A ;
Hubbard, WB ;
Lunine, JI ;
Liebert, J .
REVIEWS OF MODERN PHYSICS, 2001, 73 (03) :719-765