A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib

被引:589
作者
Chauhan, D
Catley, L
Li, GL
Podar, K
Hideshima, T
Velankar, M
Mitsiades, C
Mitsiades, N
Yasui, H
Letai, A
Ovaa, H
Berkers, C
Nicholson, B
Chao, TH
Neuteboom, STC
Richardson, P
Palladino, MA
Anderson, KC [1 ]
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Med Oncol,Jerome Lipper Multiple Myeloma Ctr, Boston, MA 02115 USA
[2] Nereus Pharmaceut, San Diego, CA 92121 USA
关键词
D O I
10.1016/j.ccr.2005.10.013
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Bortezomib therapy has proven successful for the treatment of relapsed and/or refractory multiple myeloma (MM); however, prolonged treatment is associated with toxicity and development of drug resistance. Here, we show that the novel proteasome inhibitor NPI-0052 induces apoptosis in MM cells resistant to conventional and Bortezomib therapies. NPI-0052 is distinct from Bortezomib in its chemical structure, effects on proteasome activities, mechanisms of action, and toxicity profile against normal cells. Moreover, NPI-0052 is orally bioactive. In animal tumor model studies, NPI-0052 is well tolerated and prolongs survival, with significantly reduced tumor recurrence. Combining NPI-0052 and Bortezomib induces synergistic anti-MM activity. Our study therefore provides the rationale for clinical protocols evaluating NPI-0052, alone and together with Bortezomib, to improve patient outcome in MM.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 39 条
[1]  
Adams J, 1999, CANCER RES, V59, P2615
[2]   Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer [J].
Adams, J .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2002, 6 (04) :493-500
[3]   The proteasome: A suitable antineoplastic target [J].
Adams, J .
NATURE REVIEWS CANCER, 2004, 4 (05) :349-360
[4]  
Anderson Kenneth C, 2004, Curr Hematol Rep, V3, P65
[5]   Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib [J].
Berkers, CR ;
Verdoes, M ;
Lichtman, E ;
Fiebiger, E ;
Kessler, BM ;
Anderson, KC ;
Ploegh, HL ;
Ovaa, H ;
Galardy, PJ .
NATURE METHODS, 2005, 2 (05) :357-362
[6]   Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes [J].
Bogyo, M ;
Shin, S ;
McMaster, JS ;
Ploegh, HL .
CHEMISTRY & BIOLOGY, 1998, 5 (06) :307-320
[7]   Apoptosis: checkpoint at the mitochondrial frontier [J].
Bossy-Wetzel, E ;
Green, DR .
MUTATION RESEARCH-DNA REPAIR, 1999, 434 (03) :243-251
[8]   Proteasome inhibition in multiple myeloma: Therapeutic implication [J].
Chauhan, D ;
Hideshima, T ;
Anderson, KC .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2005, 45 :465-476
[9]   Cytochrome c-dependent and -independent induction of apoptosis in multiple myeloma cells [J].
Chauhan, D ;
Pandey, P ;
Ogata, A ;
Teoh, G ;
Krett, N ;
Halgren, R ;
Rosen, S ;
Kufe, D ;
Kharbanda, S ;
Anderson, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :29995-29997
[10]   JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells [J].
Chauhan, D ;
Li, GL ;
Hideshima, T ;
Podar, K ;
Mitsiades, C ;
Mitsiades, N ;
Munshi, N ;
Kharbanda, S ;
Anderson, KC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :17593-17596