Non-germline genetically engineered mouse models for translational cancer research

被引:129
作者
Heyer, Joerg [3 ]
Kwong, Lawrence N. [1 ,2 ]
Lowe, Scott W. [4 ]
Chin, Lynda [1 ,2 ,5 ]
机构
[1] Dana Farber Canc Inst, Belfer Inst Appl Canc Sci, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] AVEO Pharmaceut, Cambridge, MA 02139 USA
[4] Cold Spring Harbor Lab, Howard Hughes Med Inst, Cold Spring Harbor, NY 11724 USA
[5] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02115 USA
关键词
GROWTH-FACTOR RECEPTOR; IN-VIVO; BREAST-CANCER; HUMAN SKIN; TUMOR MAINTENANCE; MAMMALIAN-CELLS; SONIC HEDGEHOG; MAMMARY-TUMORS; LIVER-CANCER; K-RAS;
D O I
10.1038/nrc2877
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Genetically engineered mouse models (GEMMs) of cancer have affected virtually all areas of cancer research. However, the accelerated discovery of new cancer genes emerging from large-scale cancer genomics and new chemical entities pouring from the drug discovery pipeline have strained the capacity of traditional germline mouse models to provide crucial insights. This Review introduces new approaches to modelling cancer, with emphasis on a growing collection of non-germline GEMMs (nGEMMs). These offer flexibility, speed and uniformity at reduced costs, thus paving the way for much needed throughput and practical preclinical therapeutic testing models.
引用
收藏
页码:470 / 480
页数:11
相关论文
共 86 条
[1]   Telomeres and telomerase in cancer [J].
Artandi, Steven E. ;
DePinho, Ronald A. .
CARCINOGENESIS, 2010, 31 (01) :9-18
[2]  
Atillasoy ES, 1998, AM J PATHOL, V152, P1179
[3]   Epidermal growth factor receptor and Ink4a/Arf:: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis [J].
Bachoo, RM ;
Maher, EA ;
Ligon, KL ;
Sharpless, NE ;
Chan, SS ;
You, MJJ ;
Tang, Y ;
DeFrances, J ;
Stover, E ;
Weissleder, R ;
Rowitch, DH ;
Louis, DN ;
DePinho, RA .
CANCER CELL, 2002, 1 (03) :269-277
[4]   Modeling the initiation and progression of human acute leukemia in mice [J].
Barabe, Frederic ;
Kennedy, James A. ;
Hope, Kristin J. ;
Dick, John E. .
SCIENCE, 2007, 316 (5824) :600-604
[5]   Characterization of melanocyte-specific inducible Cre recombinase transgenic mice [J].
Bosenberg, M ;
Muthusamy, V ;
Curley, DR ;
Wang, ZX ;
Hobbs, C ;
Nelson, B ;
Nogueira, C ;
Horner, JW ;
DePinho, R ;
Chin, L .
GENESIS, 2006, 44 (05) :262-267
[6]   Functional Identification of Tumor-Suppressor Genes through an In Vivo RNA Interference Screen in a Mouse Lymphoma Model [J].
Bric, Anka ;
Miething, Cornelius ;
Bialucha, Carl Uli ;
Scuoppo, Claudio ;
Zender, Lars ;
Krasnitz, Alexander ;
Xuan, Zhenyu ;
Zuber, Johannes ;
Wigler, Michael ;
Hicks, James ;
McCombie, Richard W. ;
Hemann, Michael T. ;
Hannon, Gregory J. ;
Powers, Scott ;
Lowe, Scott W. .
CANCER CELL, 2009, 16 (04) :324-335
[7]   Essential role for oncogenic Ras in tumour maintenance [J].
Chin, L ;
Tam, A ;
Pomerantz, J ;
Wong, M ;
Holash, J ;
Bardeesy, N ;
Shen, Q ;
O'Hagan, R ;
Pantginis, J ;
Zhou, H ;
Horner, JW ;
Cordon-Cardo, C ;
Yancopoulos, GD ;
DePinho, RA .
NATURE, 1999, 400 (6743) :468-472
[8]   Use of human tissue to assess the oncogenic activity of melanoma-associated mutations [J].
Chudnovsky, Y ;
Adams, AE ;
Robbins, PB ;
Lin, Q ;
Khavari, PA .
NATURE GENETICS, 2005, 37 (07) :745-749
[9]   How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men [J].
Corpet, DE ;
Pierre, F .
EUROPEAN JOURNAL OF CANCER, 2005, 41 (13) :1911-1922
[10]   c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations [J].
D'Cruz, CM ;
Gunther, EJ ;
Boxer, RB ;
Hartman, JL ;
Sintasath, L ;
Moody, SE ;
Cox, JD ;
Ha, SI ;
Belka, GK ;
Golant, A ;
Cardiff, RD ;
Chodosh, LA .
NATURE MEDICINE, 2001, 7 (02) :235-239