Serum-resistant lipopolyplexes for gene delivery to liver tumour cells

被引:63
作者
Garcia, Leire
Bunuales, Maria
Duzgunes, Nejat
de Ilarduya, Conchita Tros [1 ]
机构
[1] Univ Navarra, Dept Pharm & Pharmaceut Technol, Sch Pharm, E-31080 Pamplona, Spain
[2] Univ Pacific, Dept Microbiol, San Francisco, CA USA
关键词
gene delivery; cationic liposomes; polyethylenimine; lipopolyplexes; non-viral vectors; cancer gene therapy;
D O I
10.1016/j.ejpb.2007.01.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In this study, an efficient non-viral gene transfer system has been developed by employing polyethylenimine (PEI 800, 25 and 22 kDa) and DOTAP and cholesterol (Chol) as lipids (lipopolyplex), at three different lipid/DNA molar ratios (2/1, 5/1 and 17/1) by using five different protocols of formulation. Condensation assays revealed that PEI of 800, 25 and 22 kDa were very effective in condensing plasmid DNA, leading to a complete condensation at N/P ratios above 4. Addition of DOTAP/Chol liposomes did not further condense DNA. Increasing the molar ratio lipid/DNA in the complex resulted in higher positive values of the zeta-potential, while the particle size increased in some protocols, but not in others. High molecular weight PEI (800 kDa) used in the formulation of lipopolyplexes lead to a bigger particle size, compared to that obtained with smaller PEI species, whether branched (25 kDa) or linear (22 kDa). These vectors were also highly effective in protecting DNA from attack by DNAse I. Transfection activity was maximal by using protocols 3 and 4 and a lipid/DNA molar ratio of 17/1. These complexes showed high efficiency in gene delivery of DNA to liver cancer cells, even in the presence of high concentration of serum (60% FBS). On the other hand, complexes formed with linear PEI (22 kDa) were more effective than lipopolyplexes containing branched PEI (800 or 25 kDa). The complexes resulted to be much more efficient than conventional lipoplexes (cationic lipid and DNA) and polyplexes (cationic polymer and DNA). The same behaviour was observed for complexes prepared in the presence of the therapeutic gene pCMVIL-12. Toxicity assays revealed a viability higher than 80% in all cases, independently of the protocol, molar ratio (lipid/DNA), molecular weight and type of PEI. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 38 条
[1]   GENE-TRANSFER WITH SYNTHETIC CATIONIC AMPHIPHILES - PROSPECTS FOR GENE-THERAPY [J].
BEHR, JP .
BIOCONJUGATE CHEMISTRY, 1994, 5 (05) :382-389
[2]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[3]   ANTITUMOR AND ANTIMETASTATIC ACTIVITY OF INTERLEUKIN-12 AGAINST MURINE TUMORS [J].
BRUNDA, MJ ;
LUISTRO, L ;
WARRIER, RR ;
WRIGHT, RB ;
HUBBARD, BR ;
MURPHY, M ;
WOLF, SF ;
GATELY, MK .
JOURNAL OF EXPERIMENTAL MEDICINE, 1993, 178 (04) :1223-1230
[4]   Enhanced gene delivery in vitro and in vivo by improved transferrin-lipoplexes [J].
de Ilarduya, CT ;
Arangoa, MA ;
Moreno-Aliaga, MJ ;
Düzgünes, N .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2002, 1561 (02) :209-221
[5]   Evaluation of lipid-based reagents to mediate intracellular gene delivery [J].
Faneca, H ;
Simoes, S ;
de Lima, MCP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2002, 1567 (1-2) :23-33
[6]   A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression [J].
Fisher, KD ;
Ulbrich, K ;
Subr, V ;
Ward, CM ;
Mautner, V ;
Blakey, D ;
Seymour, LW .
GENE THERAPY, 2000, 7 (15) :1337-1343
[7]   Potentiation of cationic liposome-mediated gene delivery by polycations [J].
Gao, X ;
Huang, L .
BIOCHEMISTRY, 1996, 35 (03) :1027-1036
[8]  
Gao X, 1995, GENE THER, V2, P710
[9]   Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency [J].
Ghosh, YK ;
Visweswariah, SS ;
Bhattacharya, S .
FEBS LETTERS, 2000, 473 (03) :341-344
[10]   Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery [J].
Godbey, WT ;
Wu, KK ;
Mikos, AG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5177-5181