Isometric actions of SLn(R) x Rn on Lorentz manifolds

被引:7
作者
Adams, S [1 ]
Stuck, G
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Vector Field; Symmetric Bilinear Form; Lorentz Manifold; Isometric Action; Kill Vector Field;
D O I
10.1007/BF02802498
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a locally faithful, isometric action of SLn(R) x R-n on a connected Lorentz manifold must be a proper action. This provides an essential step toward classifying nonproper isometry groups of noncompact Lorentz manifolds.
引用
收藏
页码:93 / 111
页数:19
相关论文
共 11 条
[1]  
ADAM S, IN PRESS T AM MATH S
[2]  
ADAMS, 1999, TRANSITIVE ACTION LO
[3]  
ADAMS, IN PRESS GEOMETRIC F
[4]   The isometry group of a compact Lorentz manifold .1. [J].
Adams, S ;
Stuck, G .
INVENTIONES MATHEMATICAE, 1997, 129 (02) :239-261
[5]  
Adams S, 1997, INVENT MATH, V129, P263, DOI 10.1007/s002220050164
[6]  
ADAMS S, 1999, ORBIT NONPROPER DYNA
[7]  
ADAMS S, 1999, INDUCTION GEOMETRIC
[8]  
KOBAYSHI S, 1963, FDN DIFFERENTIAL GEO, V1
[9]   Noncompact simple automorphism groups of Lorentz manifolds and other geometric manifolds [J].
Kowalsky, N .
ANNALS OF MATHEMATICS, 1996, 144 (03) :611-640
[10]   The identity component of the isometry group of a compact Lorentz manifold [J].
Zeghib, A .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (02) :321-333