Strictly positive definite functions

被引:17
作者
Chang, KF
机构
[1] Department of Applied Mathematics, Feng Chia University, Tai-Chung Taiwan
关键词
D O I
10.1006/jath.1996.0097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete characterization of the strictly positive definite Functions on the real line. By Bochner's theorem, this is equivalent to proving that if the separated sequence of real numbers {a(n)} describes the points of discontinuity of a distribution function, there exists an almost periodic polynomial with the zeros {a(n)}. We prove a useful necessary condition that every strictly normalized, positive definite function f satisfies \f(x)\ < 1 for all x not equal 0. It is a sufficient condition fur strictly positive definiteness that if the carrier of a nonzero finite Borel measure on R is not a discrete set, then the Fourier-Stieltjes transform <(mu)over cap> of mu is strictly positive definite. (C) 1996 Academic Press, Inc.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 14 条
[1]  
Besicovitch A.S., 1932, ALMOST PERIODIC FUNC
[2]  
Boas R. P., 1954, PURE APPL MATH, V5
[3]  
Bochner S., 1932, Vorlesungen uber Fouriersche Integrale
[4]  
BORH H, 1947, ALMOST PERIODIC FUNC
[5]  
CORDENEANU C, 1968, JPERIODIC FUNCTIONS
[6]  
GOLOVIN VD, ZAP HARKOC GOS U HAR, V30, P18
[7]  
Hewitt E, 1965, Real and Abstract Analysis
[8]  
KHRUSHCHEV SV, 1981, LECT NOTES MATH, V864, P214
[9]  
Laha R. G., 1979, PROBABILITY THEORY
[10]  
LEVIN BJ, 1964, AM MATH SOC