Control of near-grazing dynamics in impact oscillators

被引:58
作者
Dankowicz, H
Jerrelind, J
机构
[1] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[2] Royal Inst Technol, Dept Aeronaut & Vehicle Engn, S-10044 Stockholm, Sweden
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2005年 / 461卷 / 2063期
关键词
piecewise smooth systems; grazing trajectories; grazing bifurcations; discontinuity mappings; control;
D O I
10.1098/rspa.2005.1516
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method is presented for controlling the persistence of a local attractor near a grazing periodic trajectory in a piecewise smooth dynamical system in the presence of discontinuous jumps in the state associated with intersections with system discontiunities. In particular, it is shown that a discrete, linear feedback strategy may be employed to retain the existence of an attractor near the grazing trajectory, such that the deviation of the attractor from the grazing trajectory goes to zero as the system parameters approach those corresponding to grazing contact. The implementation relies on a local analysis of the near-grazing dynamics using the concept of discontinuity mappings. Numerical results are presented for a linear and a nonlinear oscillator.
引用
收藏
页码:3365 / 3380
页数:16
相关论文
共 10 条
[1]   Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators [J].
Dankowicz, H ;
Zhao, XP .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (3-4) :238-257
[2]   Exploiting discontinuities for stabilization of recurrent motions [J].
Dankowicz, H ;
Piiroinen, PT .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2002, 17 (04) :317-342
[3]   Low-velocity impacts of quasiperiodic oscillations [J].
Dankowicz, H ;
Piiroinen, P ;
Nordmark, AB .
CHAOS SOLITONS & FRACTALS, 2002, 14 (02) :241-255
[4]   On the origin and bifurcations of stick-slip oscillations [J].
Dankowicz, H ;
Nordmark, AB .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) :280-302
[5]   Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems [J].
di Bernardo, M ;
Budd, CJ ;
Champneys, AR .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 160 (3-4) :222-254
[6]   Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators [J].
Fredriksson, MH ;
Nordmark, AB .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1961) :1261-1276
[7]  
JERRELIND J, IN PRESS J VIBR ACOU
[8]   Mappings of grazing-impact oscillators [J].
Molenaar, J ;
de Weger, JG ;
van de Water, W .
NONLINEARITY, 2001, 14 (02) :301-321
[9]   NONPERIODIC MOTION CAUSED BY GRAZING-INCIDENCE IN AN IMPACT OSCILLATOR [J].
NORDMARK, AB .
JOURNAL OF SOUND AND VIBRATION, 1991, 145 (02) :279-297
[10]   Universal limit mapping in grazing bifurcations [J].
Nordmark, AB .
PHYSICAL REVIEW E, 1997, 55 (01) :266-270