Strict positivity for stochastic heat equations

被引:20
作者
Tessitore, G [1 ]
Zabczyk, J
机构
[1] Univ Florence, Dipartimento Matemat Appl, Florence, Italy
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
heat equations; stochastic evolutions; positivity;
D O I
10.1016/S0304-4149(98)00024-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper is concerned with the heat equation perturbed by a spatially homogeneous Wiener process. It is shown, under general conditions on the spectral density of the noise, that solutions starting from non-negative initial conditions are strictly positive for all positive times. The result has an application to the existence of a stationary solution to a stochastic Burgers equation in dimensions higher than 2. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 15 条
[1]   STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS IN M-TYPE-2 BANACH-SPACES [J].
BRZEZNIAK, Z .
POTENTIAL ANALYSIS, 1995, 4 (01) :1-45
[2]  
BRZEZNIAK Z, 1997, RANDOM EVOLUTIONS RD
[3]  
Chow P.L., 1990, Stoch. Stoch. Rep., V29, P377, DOI DOI 10.1080/17442509008833622
[4]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[5]   SPATIALLY HOMOGENEOUS RANDOM EVOLUTIONS [J].
DAWSON, DA ;
SALEHI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1980, 10 (02) :141-180
[6]  
DETTWEILER E, 1985, STOCHASTIC INTEGRATI
[7]  
KIFER Y, 1997, IN PRESS PROBAB THEO
[8]  
MALGARINI LB, 1994, THESIS U ROMA TOR VE
[9]  
Mueller C., 1991, Stochastics and Stochastics Reports, V37, P225, DOI 10.1080/17442509108833738
[10]  
Pardoux E., 1975, Equations aux derivees partielles stochastiques non lineaires monotones