The t-SNARE Complex: A Close Up

被引:12
作者
Dun, Alison R. [1 ]
Rickman, Colin [2 ]
Duncan, Rory R. [1 ]
机构
[1] Univ Edinburgh, Sch Med, Ctr Integrat Physiol, Edinburgh EH8 9XD, Midlothian, Scotland
[2] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
Exocytosis; SNAP-25; Syntaxin; FLIM; MEMBRANE-FUSION; SYNAPTIC EXOCYTOSIS; PLASMA-MEMBRANE; SYNTAXIN; SNAP-25; PROTEINS; DYNAMICS; SYNAPTOBREVIN; VESICLES; MUNC18-1;
D O I
10.1007/s10571-010-9599-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50-60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35-70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation :into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.
引用
收藏
页码:1321 / 1326
页数:6
相关论文
共 44 条
[1]  
Altenbach Kirsten, 2009, Fungal Biology Reviews, V23, P67, DOI 10.1016/j.fbr.2009.12.002
[2]   Tracking SNARE complex formation in live endocrine cells [J].
An, SJ ;
Almers, W .
SCIENCE, 2004, 306 (5698) :1042-1046
[3]   Munc18-1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells [J].
Arunachalam, Lakshmanan ;
Han, Liping ;
Tassew, Nardos G. ;
He, Yu ;
Wang, Li ;
Xie, Li ;
Fujita, Yoshihito ;
Kwan, Edwin ;
Davletov, Bazbek ;
Monnier, Philippe P. ;
Gaisano, Herbert Y. ;
Sugita, Shuzo .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (02) :722-734
[4]   A cell-free system for regulated exocytosis in PC12 cells [J].
Avery, J ;
Ellis, DJ ;
Lang, T ;
Holroyd, P ;
Riedel, D ;
Henderson, RM ;
Edwardson, JM ;
Jahn, R .
JOURNAL OF CELL BIOLOGY, 2000, 148 (02) :317-324
[5]  
Becker W., 2005, ADV TIME CORRELATED
[6]  
CHAPMAN ER, 1994, J BIOL CHEM, V269, P27427
[7]   Sequential SNARE assembly underlies priming and triggering of exocytosis [J].
Chen, YA ;
Scales, SJ ;
Scheller, RH .
NEURON, 2001, 30 (01) :161-170
[8]   SNAPS, A FAMILY OF NSF ATTACHMENT PROTEINS INVOLVED IN INTRACELLULAR MEMBRANE-FUSION IN ANIMALS AND YEAST [J].
CLARY, DO ;
GRIFF, IC ;
ROTHMAN, JE .
CELL, 1990, 61 (04) :709-721
[9]   THE PACKING OF ALPHA-HELICES - SIMPLE COILED-COILS [J].
CRICK, FHC .
ACTA CRYSTALLOGRAPHICA, 1953, 6 (8-9) :689-697
[10]   Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes [J].
de Wit, Heidi ;
Walter, Alexander M. ;
Milosevic, Ira ;
Gulyas-Kovacs, Attila ;
Riedel, Dietmar ;
Sorensen, Jakob B. ;
Verhage, Matthijs .
CELL, 2009, 138 (05) :935-946