Induced disease resistance in plants by chemicals

被引:368
作者
Oostendorp, M
Kunz, W
Dietrich, B
Staub, T
机构
[1] Novartis Crop Protect, Res Biol, CH-4332 Stein, Switzerland
[2] Novartis Crop Protect, CH-4002 Basel, Switzerland
[3] NABRI, Res Triangle Pk, NC 27709 USA
关键词
acibenzolar-S-methyl; BABA; carpropamide; induced resistance; probenazole; salicylic acid; SAR;
D O I
10.1023/A:1008760518772
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plants can be induced locally and systemically to become more resistant to diseases through various biotic or abiotic stresses. The biological inducers include necrotizing pathogens, non-pathogens or root colonizing bacteria. Through at network of signal pathways they induce resistance spectra and marker proteins that are characteristic for the different plant species and activation systems. The best characterized signal pathway for systemically induced resistance is SAR (systemic acquired resistance) that is activated by localized infections with necrotizing pathogens. It is characterized by protection against a broad range of pathogens, by a set of induced proteins and by its dependence on salicylic acid (SA) Various chemicals have been discovered that seem to act at various points in these defense activating networks and mimic all or parts of the biological activation of resistance. Of these, only few have reached commercialization. The best-studied resistance activator is acibenzolar-5-methyl (BION). At low rates it activates resistance in many crops against a broad spectrum of diseases, including fungi, bacteria and viruses. In monocots, activated resistance by BION typically is very long lasting, while the lasting effect is less pronounced in dicots. BION is translocated systemically in plants and can take the place of SA in the natural SAR signal pathway, inducing the same spectrum of resistance and the same set of molecular markers. Probenazole (ORYZEMATE) is used mainly on rice against rice blast and bacterial leaf blight. Its mode of action is not well understood partly because biological systems of systemically induced resistance are not well defined in rice. Treated plants clearly respond faster and in a resistant manner to infections by the two pathogens. Other compounds like beta-aminobutyric acid as wdl as extracts from plants and microorganisms have also been described as resistance inducers. For most of these, neither the mode of action nor reliable pre-challenge markers are known and still other pathways for resistance activation are suspected. Resistance inducing chemicals that are able to induce broad disease resistance offer an additional option for the farmer to complement genetic disease resistance and the use of fungicides. If integrated properly in plant health management programs, they can prolong the useful life of both the resistance genes and the fungicides presently used.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 51 条
[1]   Signal conflicts and synergies in induced resistance to multiple attackers [J].
Bostock, RM .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1999, 55 (02) :99-109
[2]   SYSTEMIC RESISTANCE OF POTATO PLANTS AGAINST PHYTOPHTHORA-INFESTANS INDUCED BY UNSATURATED FATTY-ACIDS [J].
COHEN, Y ;
GISI, U ;
MOSINGER, E .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1991, 38 (04) :255-263
[3]   BETA-AMINOBUTYRIC ACID INDUCES THE ACCUMULATION OF PATHOGENESIS-RELATED PROTEINS IN TOMATO (LYCOPERSICON-ESCULENTUM L.) PLANTS AND RESISTANCE TO LATE BLIGHT INFECTION CAUSED BY PHYTOPHTHORA-INFESTANS [J].
COHEN, Y ;
NIDERMAN, T ;
MOSINGER, E ;
FLUHR, R .
PLANT PHYSIOLOGY, 1994, 104 (01) :59-66
[4]  
COHEN Y, 1995, MODERN FUNGICIDES AN, P461
[5]   Cell-specific expression of salicylate hydroxylase in an attempt to separate localized HR and systemic signalling establishing SAR in tobacco [J].
Darby, Robert M. ;
Maddison, Anne ;
Mur, Luis A. J. ;
Bi, Yong-Mei ;
Draper, John .
MOLECULAR PLANT PATHOLOGY, 2000, 1 (02) :115-123
[6]   A benzothiadiazole derivative induces systemic acquired resistance in tobacco [J].
Friedrich, L ;
Lawton, K ;
Ruess, W ;
Masner, P ;
Specker, N ;
Rella, MG ;
Meier, B ;
Dincher, S ;
Staub, T ;
Uknes, S ;
Metraux, JP ;
Kessmann, H ;
Ryals, J .
PLANT JOURNAL, 1996, 10 (01) :61-70
[7]   REQUIREMENT OF SALICYLIC-ACID FOR THE INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
GAFFNEY, T ;
FRIEDRICH, L ;
VERNOOIJ, B ;
NEGROTTO, D ;
NYE, G ;
UKNES, S ;
WARD, E ;
KESSMANN, H ;
RYALS, J .
SCIENCE, 1993, 261 (5122) :754-756
[8]  
GOERLACH J, 1996, PLANT CELL, V8, P629
[9]   Elicitors of plant defensive systems reduce insect densities and disease incidence [J].
Inbar, M ;
Doostdar, H ;
Sonoda, RM ;
Leibee, GL ;
Mayer, RT .
JOURNAL OF CHEMICAL ECOLOGY, 1998, 24 (01) :135-149
[10]  
Kessmann H, 1996, BRIGHTON CROP PROTECTION CONFERENCE: PESTS & DISEASES - 1996, VOLS 1-3, P961