Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints

被引:193
作者
Ye, JJ [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
mathematical program with equilibrium constraints; necessary optimality conditions; sufficient optimality conditions; constraint qualifications;
D O I
10.1016/j.jmaa.2004.10.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Various stationary conditions for MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary condition and show that it is sufficient for global or local optimality under some MPEC generalized convexity assumptions. Moreover, we propose new constraint qualifications for M-stationary conditions to hold. These new constraint qualifications include piecewise MFCQ, piecewise Slater condition, MPEC weak reverse convex constraint qualification, MPEC Arrow-Hurwicz-Uzawa constraint qualification, MPEC Zangwill constraint qualification, MPEC Kuhn-Tucker constraint qualification, and MPEC Abadie constraint qualification. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:350 / 369
页数:20
相关论文
共 25 条
[1]  
Abadie J., 1967, NONLINEAR PROGRAMMIN, P21
[2]  
[Anonymous], 1980, SOVIET MATH DOKL
[3]  
Arrow KJ., 1958, Studies in Nonlinear Programming
[4]  
Bazaraa M. S., 2013, NONLINEAR PROGRAMMIN
[5]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO, DOI DOI 10.1137/1.9781611971309
[6]  
FLEGEL ML, 2002, OPTIMALITY CONDITION
[7]  
Kuhn H., 1951, P 2 BERK S MATH STAT, P481, DOI DOI 10.1007/BF01582292
[8]   Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints [J].
Luo, ZQ ;
Pang, JS ;
Ralph, D ;
Wu, SQ .
MATHEMATICAL PROGRAMMING, 1996, 75 (01) :19-76
[9]  
Luo ZQ, 1996, Mathematical Programs with Equilibrium Constraints
[10]  
Mangasarian OL., 1994, NONLINEAR PROGRAMMIN, DOI [DOI 10.1137/1.9781611971255, 10.1137/1.9781611971255]