A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis

被引:159
作者
Xu, CC
Fan, JL
Riekhof, W
Froehlich, JE
Benning, C [1 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA
关键词
chloroplast envelopes; lipid arrays; lipid permease; lipid trafficking; thylakoid lipids;
D O I
10.1093/emboj/cdg234
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotes, enzymes of different subcellular compartments participate in the assembly of membrane lipids. As a consequence, interorganelle lipid transfer is extensive in growing cells. A prominent example is the transfer of membrane lipid precursors between the endoplasmic reticulum (ER) and the photosynthetic thylakoid membranes in plants. Mono- and digalactolipids are typical photosynthetic membrane lipids. In Arabidopsis, they are derived from one of two pathways, either synthesized de novo in the plastid, or precursors are imported from the ER, giving rise to distinct molecular species. Employing a high-throughput robotic screening procedure generating arrays of spot chromatograms, mutants of Arabidopsis were isolated, which accumulated unusual trigalactolipids. In one allelic mutant subclass, trigalactosyldiacylglycerol1, the primary defect caused a disruption in the biosynthesis of ER-derived thylakoid lipids. Secondarily, a processive galactosyltransferase was activated, leading to the accumulation of oligogalactolipids. Mutations in a permease-like protein of the outer chloroplastic envelope are responsible for the primary biochemical defect. It is proposed that this protein is part of a lipid transfer complex.
引用
收藏
页码:2370 / 2379
页数:10
相关论文
共 35 条
[1]  
[Anonymous], 1998, LIPIDS PHOTOSYNTHESI
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana [J].
Awai, K ;
Maréchal, E ;
Block, MA ;
Brun, D ;
Masuda, T ;
Shimada, H ;
Takamiya, K ;
Ohta, H ;
Joyard, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10960-10965
[4]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[5]   ACCUMULATION OF A NOVEL GLYCOLIPID AND A BETAINE LIPID IN CELLS OF RHODOBACTER-SPHAEROIDES GROWN UNDER PHOSPHATE LIMITATION [J].
BENNING, C ;
HUANG, ZH ;
GAGE, DA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 317 (01) :103-111
[6]   FLUXES THROUGH THE PROKARYOTIC AND EUKARYOTIC PATHWAYS OF LIPID-SYNTHESIS IN THE 16-3 PLANT ARABIDOPSIS-THALIANA [J].
BROWSE, J ;
WARWICK, N ;
SOMERVILLE, CR ;
SLACK, CR .
BIOCHEMICAL JOURNAL, 1986, 235 (01) :25-31
[7]  
Bruce BD, 1994, PLANT MOL BIOL MANUA, P1
[8]   THERMOLYSIN IS A SUITABLE PROTEASE FOR PROBING THE SURFACE OF INTACT PEA-CHLOROPLASTS [J].
CLINE, K ;
WERNERWASHBURNE, M ;
ANDREWS, J ;
KEEGSTRA, K .
PLANT PHYSIOLOGY, 1984, 75 (03) :675-678
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   The role of UDP-glucose epimerase in carbohydrate metabolism of Arabidopsis [J].
Dörmann, P ;
Benning, C .
PLANT JOURNAL, 1998, 13 (05) :641-652