Surface characterization of heat-treated electrolytic manganese dioxide

被引:56
作者
Malloy, AP [1 ]
Browning, GJ [1 ]
Donne, SW [1 ]
机构
[1] Univ Newcastle, Discipline Chem, Newcastle, NSW 2308, Australia
关键词
manganese dioxide; surface titrations; surface hydroxyl groups; battery materials;
D O I
10.1016/j.jcis.2004.12.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work a titration technique was used to determine the aniphoteric surface properties of a series of heat-treated electrolytic manganese dioxide (EMD) samples (Lip to 500 degrees C). The surface of each sample was found to consist of independent acidic and basic hydroxyl sites. which could be characterized by their respective equilibrium constants and site concentrations. It was found that the acidic sites Could not be characterized by a single equilibrium constant, but rather by a distribution indicating the Subtle differences between individual sites. while a single equilibrium constant adequately, represented the basic sites. For EMD. K-a varied between 0.1 and 6.3 x 10(-5). with a corresponding a [equivalent to Mn-OH(a)T] value varying between 9.1 and 6.4 x 10(-6) mol m(-2) over the pH range considered. K-b and [equivalent to Mn-OH(b)T] were found to he 1.81 x 10(-9) and 1.93 x 10(-5) mol m(-2), respectively. With heat treatment K-a increased suggesting a strengthening of the Mn-O bond via the removal of defects Such as Mn3+ ions and cation vacancies. The fact that K-b also increased was initially counterintuitive because it suggested that the Mn-O bond had been weakened by heat treatment. However. assuming,, that the acidic and basic hydroxyl groups are independent. the trends in Kb Could be rationalized in terms of oxygen ion coordination in the progressively heat-treated samples. The number of surface sites (N-s) was determined crystallographically and from the sum [equivalent to Mn-OH(a)T] + [equivalent to Mn-OH(b)T]. The data from both methods were of the same order of magnitude but exhibited different trends due to certain inadequacies in both methods. However, the data trends did indicate that the crystal planes at the particle Surface Could be changing with heat treatment due to a decrease in the value of Ns determined from the surface titrations. Electrochemical analysis of the samples in 9 M KOH indicated that their performance degraded considerably with heat treatment. In comparison with the surface titration data. it was Concluded that proton insertion into the Structure Occurred Only through basic surface sites. the decreasing number of which could limit performance. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:653 / 664
页数:12
相关论文
共 33 条
[1]   First-principles study of the structure of stoichiometric and Mn-deficient MnO2 [J].
Balachandran, D ;
Morgan, D ;
Ceder, G ;
van de Walle, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2003, 173 (02) :462-475
[2]  
BOEHM HP, 1971, DISCUSS FARADAY SOC, P264
[3]  
BURNS RG, 1980, MANGANESE DIOXIDE S, V2, P97
[4]   STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF THE PROTON GAMMA-MNO2 SYSTEM [J].
CHABRE, Y ;
PANNETIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (01) :1-130
[5]  
DAHAL MP, 1997, THESIS U NEWCASTLE
[6]   Redox processes at the manganese dioxide electrode .1. Constant-current intermittent discharge [J].
Donne, SW ;
Lawrance, GA ;
Swinkels, DAJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2949-2953
[7]   Redox processes at the manganese dioxide electrode .2. Slow-scan cyclic voltammetry [J].
Donne, SW ;
Lawrance, GA ;
Swinkels, DAJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2954-2961
[8]   Redox processes at the manganese dioxide electrode .3. Detection of soluble and solid intermediates during reduction [J].
Donne, SW ;
Lawrance, GA ;
Swinkels, DAJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2961-2967
[9]  
HEUER AH, 2000, ITE LETT BATTERIES N, V1, P926
[10]   MULTISITE PROTON ADSORPTION MODELING AT THE SOLID-SOLUTION INTERFACE OF (HYDR)OXIDES - A NEW APPROACH .1. MODEL DESCRIPTION AND EVALUATION OF INTRINSIC REACTION CONSTANTS [J].
HIEMSTRA, T ;
VANRIEMSDIJK, WH ;
BOLT, GH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1989, 133 (01) :91-104