Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology

被引:268
作者
Chen, Zhongying [1 ]
Agnew, Jennifer L. [1 ]
Cohen, Jerry D. [2 ,3 ]
He, Ping [4 ]
Shan, Libo [4 ]
Sheen, Jen [4 ]
Kunkel, Barbara N. [1 ]
机构
[1] Washington Univ, Dept Biol, St Louis, MO 63130 USA
[2] Univ Minnesota, Dept Hort Sci, St Paul, MN 55108 USA
[3] Univ Minnesota, Microbial & Plant Genom Inst, St Paul, MN 55108 USA
[4] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02114 USA
关键词
disease; indole acetic acid; pathogen; virulence; host physiology;
D O I
10.1073/pnas.0704901104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Pseudomonas syringae type III effector AvrRpt2 promotes bacterial virulence on Arabidopsis thaliana plants lacking a functional RPS2 gene (rps2 mutant plants). To investigate the mechanisms underlying the virulence activity of AvrRpt2, we examined the phenotypes of transgenic A. thaliana rps2 seedlings constitutively expressing AvrRpt2. These seedlings exhibited phenotypes reminiscent of A. thaliana mutants with altered auxin physiology, including longer primary roots, increased number of lateral roots, and increased sensitivity to exogenous auxin. They also had increased levels of free indole acetic acid (IAA). The presence of AvrRpt2 also was correlated with a further increase in free IAA levels during infection with A syringae pv. tomato strain DC3000 (PstDC3000). These results indicate that AvrRpt2 alters A. thaliana auxin physiology. Application of the auxin analog 1-naphthalene-acetic acid promoted disease symptom development in PstDC3000-infected plants, suggesting that elevated auxin levels within host tissue promote PstDC3000 virulence. Thus, AvrRpt2 may be among the virulence factors of A syringae that modulate host auxin physiology to promote disease.
引用
收藏
页码:20131 / 20136
页数:6
相关论文
共 61 条
[1]   ASC4, A PRIMARY INDOLEACETIC ACID-RESPONSIVE GENE ENCODING 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE IN ARABIDOPSIS-THALIANA - STRUCTURAL CHARACTERIZATION, EXPRESSION IN ESCHERICHIA-COLI, AND EXPRESSION CHARACTERISTICS IN RESPONSE TO AUXIN [J].
ABEL, S ;
NGUYEN, MD ;
CHOW, W ;
THEOLOGIS, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :19093-19099
[2]   Bacterial elicitation and evasion of plant innate immunity [J].
Abramovitch, Robert B. ;
Anderson, Jeffrey C. ;
Martin, Gregory B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (08) :601-611
[3]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[4]  
Alfano JR, 1996, PLANT CELL, V8, P1683, DOI 10.1105/tpc.8.10.1683
[5]   Some tryptophan pathways in the phytopathogen Xanthomonas oryzae pv. oryzae [J].
Ansari, MM ;
Sridhar, R .
FOLIA MICROBIOLOGICA, 2000, 45 (06) :531-537
[6]   Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease [J].
Axtell, MJ ;
Chisholm, ST ;
Dahlbeck, D ;
Staskawicz, BJ .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1537-1546
[7]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[8]   Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1 [J].
Belkhadir, Y ;
Nimchuk, Z ;
Hubert, DA ;
Mackey, D ;
Dangl, JL .
PLANT CELL, 2004, 16 (10) :2822-2835
[9]   Pseudomonas syringae phytotoxins:: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases [J].
Bender, CL ;
Alarcón-Chaidez, F ;
Gross, DC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1999, 63 (02) :266-+
[10]   DISEASE DEVELOPMENT IN ETHYLENE-INSENSITIVE ARABIDOPSIS-THALIANA INFECTED WITH VIRULENT AND AVIRULENT PSEUDOMONAS AND XANTHOMONAS PATHOGENS [J].
BENT, AF ;
INNES, RW ;
ECKER, JR ;
STASKAWICZ, BJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1992, 5 (05) :372-378