Users Polarization on Facebook and Youtube

被引:136
作者
Bessi, Alessandro [1 ,2 ]
Zollo, Fabiana [2 ]
Del Vicario, Michela [2 ]
Puliga, Michelangelo [2 ]
Scala, Antonio [2 ,3 ]
Caldarelli, Guido [2 ,3 ]
Uzzi, Brian [4 ]
Quattrociocchi, Walter [2 ,3 ]
机构
[1] IUSS, Pavia, Italy
[2] IMT Lucca, CSSLab, Lucca, LU, Italy
[3] CNR, ISC, Rome, Italy
[4] Northwestern Univ, NICO, Evanston, IL USA
来源
PLOS ONE | 2016年 / 11卷 / 08期
关键词
POWER; MEDIA;
D O I
10.1371/journal.pone.0159641
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Users online tend to select information that support and adhere their beliefs, and to form polarized groups sharing the same view-e.g. echo chambers. Algorithms for content promotion may favour this phenomenon, by accounting for users preferences and thus limiting the exposure to unsolicited contents. To shade light on this question, we perform a comparative study on how same contents (videos) are consumed on different online social media-i.e. Facebook and YouTube-over a sample of 12M of users. Our findings show that content drives the emergence of echo chambers on both platforms. Moreover, we show that the users' commenting patterns are accurate predictors for the formation of echo-chambers.
引用
收藏
页数:24
相关论文
共 26 条
  • [1] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [2] [Anonymous], END FRAMING AS WE KN
  • [3] [Anonymous], 2014, ARXIV14112893
  • [4] [Anonymous], 2015, DOES MISINFORMATION
  • [5] [Anonymous], P SOCINFO 2014
  • [6] [Anonymous], 2010, P 16 ACM SIGKDD INT, DOI DOI 10.1145/1835804.1835875
  • [7] [Anonymous], 1996, FACTS NORMS CONTRIBU, DOI DOI 10.7551/MITPRESS/1564.001.0001
  • [8] [Anonymous], 2011, ECONOMETRIC ANAL
  • [9] [Anonymous], 2013, DIGITAL WILDFIRES HY
  • [10] Bessi A., 2014, Journal of Trust Management, V1, P12, DOI [DOI 10.1186/S40493-014-0012-Y, 10.1186/s40493-014-0012-y]