N-derivative of Shannon entropy of shape function for atoms

被引:40
作者
Sen, KD [1 ]
De Proft, F [1 ]
Borgoo, A [1 ]
Geerlings, P [1 ]
机构
[1] Vrije Univ Brussels, Eenheid Algemene Chem, Fac Wetenschappen, B-1050 Brussels, Belgium
关键词
D O I
10.1016/j.cplett.2005.05.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Shannon entropy of the ratio of electron density and the number of electrons, shape function entropy, is reported for the atoms He-Ac within the non-relativistic exchange-only optimized effective potential model. The derivative of the shape function entropy with electron number at constant external potential is related to an integral containing the difference between the average Fukui function and the shape function weighted by the logarithm of electron density. The trends in the shape function entropy, its spin analogue and the corresponding derivatives with electron number reveal interesting periodic behaviour. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 37 条
[1]  
Aashamar K., 1978, Atomic Data and Nuclear Data Tables, V22, P443, DOI 10.1016/0092-640X(78)90019-0
[2]   Density per particle as a descriptor of Coulombic systems [J].
Ayers, PW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (05) :1959-1964
[3]   The use of density functional theory-based reactivity descriptors in molecular similarity calculations [J].
Boon, G ;
De Proft, F ;
Langenaeker, W ;
Geerlings, P .
CHEMICAL PHYSICS LETTERS, 1998, 295 (1-2) :122-128
[4]   Quantum Similarity of atoms: a numerical Hartree-Fock and information theory approach [J].
Borgoo, A ;
Godefroid, M ;
Sen, KD ;
De Proft, F ;
Geerlings, P .
CHEMICAL PHYSICS LETTERS, 2004, 399 (4-6) :363-367
[5]   GENERALIZATION OF THE OPTIMIZED-EFFECTIVE-POTENTIAL MODEL TO INCLUDE ELECTRON CORRELATION - A VARIATIONAL DERIVATION OF THE SHAM-SCHLUTER EQUATION FOR THE EXACT EXCHANGE-CORRELATION POTENTIAL [J].
CASIDA, ME .
PHYSICAL REVIEW A, 1995, 51 (03) :2005-2013
[6]   Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom [J].
Chattaraj, PK ;
Cedillo, A ;
Parr, RG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (24) :10621-10626
[7]   On the importance of the "density per particle" (shape function) in the density functional theory [J].
De Proft, F ;
Ayers, PW ;
Sen, KD ;
Geerlings, P .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (21) :9969-9973
[8]   Relativistic spin-density-functional theory: Robust solution of single-particle equations for open-subshell atoms [J].
Engel, E ;
Auth, T ;
Dreizler, RM .
PHYSICAL REVIEW B, 2001, 64 (23)
[9]   ACCURATE OPTIMIZED-POTENTIAL-MODEL SOLUTIONS FOR SPHERICAL SPIN-POLARIZED ATOMS - EVIDENCE FOR LIMITATIONS OF THE EXCHANGE-ONLY LOCAL SPIN-DENSITY AND GENERALIZED-GRADIENT APPROXIMATIONS [J].
ENGEL, E ;
VOSKO, SH .
PHYSICAL REVIEW A, 1993, 47 (04) :2800-2811
[10]  
Engel E, 1999, J COMPUT CHEM, V20, P31, DOI 10.1002/(SICI)1096-987X(19990115)20:1<31::AID-JCC6>3.0.CO