Simulation techniques for cosmological simulations

被引:68
作者
Dolag, K. [1 ]
Borgani, S. [2 ]
Schindler, S. [3 ]
Diaferio, A. [4 ,5 ]
Bykov, A. M. [6 ]
机构
[1] Max Planck Inst Astrophys, D-85741 Garching, Germany
[2] Univ Trieste, Dept Astron, I-34143 Trieste, Italy
[3] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria
[4] Univ Turin, Dipartimento Fis Gen Amedeo Avogadro, Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10135 Turin, Italy
[6] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
cosmology : theory; large-scale structure of universe; hydrodynamics; method; numerical; N-body simulations;
D O I
10.1007/s11214-008-9316-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.
引用
收藏
页码:229 / 268
页数:40
相关论文
共 105 条
[1]   Modeling primordial gas in numerical cosmology [J].
Abel, T ;
Anninos, P ;
Zhang, Y ;
Norman, ML .
NEW ASTRONOMY, 1997, 2 (03) :181-207
[2]   Fundamental differences between SPH and grid methods [J].
Agertz, Oscar ;
Moore, Ben ;
Stadel, Joachim ;
Potter, Doug ;
Miniati, Francesco ;
Read, Justin ;
Mayer, Lucio ;
Gawryszczak, Artur ;
Kravtosov, Andrey ;
Nordlund, Ake ;
Pearce, Frazer ;
Quilis, Vicent ;
Rudd, Douglas ;
Springel, Volker ;
Stone, James ;
Tasker, Elizabeth ;
Teyssier, Romain ;
Wadsley, James ;
Walder, Rolf .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :963-978
[3]   Performance and accuracy of a GRAPE-3 system for collisionless N-body simulations [J].
Athanassoula, E ;
Bosma, A ;
Lambert, JC ;
Makino, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 293 (04) :369-380
[4]   Performance characteristics of TreePM codes [J].
Bagla, JS ;
Ray, S .
NEW ASTRONOMY, 2003, 8 (07) :665-677
[5]   TreePM: A code for cosmological N-body simulations [J].
Bagla, JS .
JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2002, 23 (3-4) :185-196
[6]   VON-NEUMANN STABILITY ANALYSIS OF SMOOTHED PARTICLE HYDRODYNAMICS - SUGGESTIONS FOR OPTIMAL-ALGORITHMS [J].
BALSARA, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 121 (02) :357-372
[7]   THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM-FIELDS [J].
BARDEEN, JM ;
BOND, JR ;
KAISER, N ;
SZALAY, AS .
ASTROPHYSICAL JOURNAL, 1986, 304 (01) :15-61
[8]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[9]  
Bertschinger E., 1995, ASTROPH9506070
[10]   The tree particle-mesh N-body gravity solver [J].
Bode, P ;
Ostriker, JP ;
Xu, GH .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 128 (02) :561-569