Melt-drawn scanning near-field optical microscopy probe profiles

被引:42
作者
Williamson, RL
Miles, MJ
机构
[1] H. H. Wills Phys. Lab., Royal Fort, University of Bristol, Bristol BS8 1TL, Tyndall Avenue
关键词
D O I
10.1063/1.363521
中图分类号
O59 [应用物理学];
学科分类号
摘要
Consistently obtaining super-resolution with scanning near-field optical microscopy depends almost entirely on the ability to manufacture reproducibly probes with aperture sizes smaller than 100 nm. The probe fabrication process usually involves heating an optical fiber using a CO2 laser and melt-drawing the glass to produce a taper. A number of variables ultimately define the taper shape but the actual effects these parameters have an still not clear. In this work, the physics behind the taper formation is examined in detail for the first time and equations describing the initial taper profile and the final aperture size are derived in terms of the experimental conditions. It is shown that the taper shape is primarily determined by the laser spot size. The pulling force, although important, has a lower significance. Continuum mechanics and Stefan's law are used to show that the aperture size is closely related to the radius of the fiber at the start of the hard pull and the fiber temperature at that time. Further comparisons of experimental data with the expected taper profile exposes the heating effect of the CO2 laser. Further analysis is given using a form of Mie theory which describes the interaction of electromagnetic fields with cylindrical structures. These results give many significant insights into the fabrication process and the formation of the aperture. (C) 1996 American Institute of Physics.
引用
收藏
页码:4804 / 4812
页数:9
相关论文
共 18 条