Nonlinear Trends, Long-Range Dependence, and Climate Noise Properties of Surface Temperature

被引:142
作者
Franzke, Christian [1 ]
机构
[1] British Antarctic Survey, Cambridge CB3 0ET, England
基金
英国自然环境研究理事会;
关键词
EMPIRICAL MODE DECOMPOSITION; TIME-SERIES; VARIABILITY; MEMORY; PERSISTENCE; LAW;
D O I
10.1175/JCLI-D-11-00293.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study investigates the significance of trends of four temperature time series-Central England Temperature (CET), Stockholm, Faraday-Vernadsky, and Alert. First the robustness and accuracy of various trend detection methods are examined: ordinary least squares, robust and generalized linear model regression, Ensemble Empirical Mode Decomposition (EEMD), and wavelets. It is found in tests with surrogate data that these trend detection methods are robust for nonlinear trends, superposed autocorrelated fluctuations, and non-Gaussian fluctuations. An analysis of the four temperature time series reveals evidence of long-range dependence (LRD) and nonlinear warming trends. The significance of these trends is tested against climate noise. Three different methods are used to generate climate noise: (i) a short-range-dependent autoregressive process of first order [AR(1)], (ii) an LRD model, and (iii) phase scrambling. It is found that the ability to distinguish the observed warming trend from stochastic trends depends on the model representing the background climate variability. Strong evidence is found of a significant warming trend at Faraday-Vernadsky that cannot be explained by any of the three null models. The authors find moderate evidence of warming trends for the Stockholm and CET time series that are significant against AR(1) and phase scrambling but not the LRD model. This suggests that the degree of significance of climate trends depends on the null model used to represent intrinsic climate variability. This study highlights that in statistical trend tests, more than just one simple null model of intrinsic climate variability should be used. This allows one to better gauge the degree of confidence to have in the significance of trends.
引用
收藏
页码:4172 / 4183
页数:12
相关论文
共 62 条
[1]  
Alexandrov T., 2008, RES REP SERIES US CE
[2]  
Andreas EL, 1997, J ATMOS OCEAN TECH, V14, P554, DOI 10.1175/1520-0426(1997)014<0554:UWTDT>2.0.CO
[3]  
2
[4]  
[Anonymous], 1998, Applied Regression Analysis
[5]  
[Anonymous], 2003, IEEE EURASIP WORKSH
[6]   Testing for Deterministic Trends in Global Sea Surface Temperature [J].
Barbosa, Susana M. .
JOURNAL OF CLIMATE, 2011, 24 (10) :2516-2522
[7]  
Beran J., 1994, Statistics for Long-Memory Processes
[8]  
Czaja A, 2003, GEOPHYS MONOGR SER, P147
[9]  
Diggle PJ., 1990, TIME SERIES
[10]   Deterministic versus stochastic trends: Detection and challenges [J].
Fatichi, S. ;
Barbosa, S. M. ;
Caporali, E. ;
Silva, M. E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114