Parameter estimation problems with singular information matrices

被引:173
作者
Stoica, P [1 ]
Marzetta, TL
机构
[1] Uppsala Univ, Dept Syst & Control, Uppsala, Sweden
[2] Lucent Technol, Bell Labs, Math Sci Res Ctr, Murray Hill, NJ 07974 USA
关键词
Cramer-Rao; Fisher information matrix; parameter estimate;
D O I
10.1109/78.890346
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The case of a singular Fisher information matrix (FIM) represents a significant complication for the theory of the Cramer-Rao lower bound (CRB) that is usually handled by resorting to the pseudoinverse of the Fisher matrix, We take a different approach in which the CRB is derived as the solution to an unconstrained quadratic maximization problem, which enables us to handle the singular case in a simple yet rigorous manner. When the Fisher matrix is singular, except under unusual circumstances, any estimator having the specified bias derivatives that figure in the CRB must have infinite variance.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 14 条
[1]   INFORMATION AND ASYMPTOTIC EFFICIENCY IN PARAMETRIC NONPARAMETRIC MODELS [J].
BEGUN, JM ;
HALL, WJ ;
HUANG, WM ;
WELLNER, JA .
ANNALS OF STATISTICS, 1983, 11 (02) :432-452
[2]  
Cramer H, 1946, MATH METHOD STAT
[3]   Exploring estimator bias-variance tradeoffs using the uniform CR bound [J].
Hero, AO ;
Fessler, JA ;
Usman, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (08) :2026-2041
[4]  
IBRAGIMOV IA, 1981, STAT ESTIMATION ASYM, P74
[5]  
*IEEE, 1998, P IEEE, V86
[6]  
Kay S M., 1993, Statistical Signal Processing: Estimation Theory
[7]   CONDITIONS FOR NONNEGATIVENESS OF PARTITIONED MATRICES [J].
KREINDLE.E ;
JAMESON, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (01) :147-&
[8]  
LIU RC, 1993, ANN STAT, V21
[9]  
MARZETTA TL, 1997, P IEEE INT C AC SPEE, P3829
[10]  
Rao C. R., 1965, LINEAR STAT INFERENC