Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies

被引:93
作者
Gao, N
Zavialov, AV
Li, W
Sengupta, J
Valle, M
Gursky, RP
Ehrenberg, M
Frank, J [1 ]
机构
[1] Howard Hughes Med Inst Hlth Res Inc, Albany, NY USA
[2] SUNY Albany, Dept Biomed Sci, Albany, NY 12201 USA
[3] Biomed Ctr, Dept Cell & Mol Biol, S-75124 Uppsala, Sweden
[4] Univ Autonoma Madrid, Consejo Superior Invest Cientificas, Ctr Nacl Biotecnol, Madrid 28049, Spain
[5] Univ Autonoma Madrid, Consejo Superior Invest Cientificas, Ctr Nacl Biotecnol, Madrid 28049, Spain
关键词
D O I
10.1016/j.molcel.2005.05.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ribosome recycling, the disassembly of the posttermination complex after each round of protein synthesis, is an essential step in mRNA translation, but its mechanism has remained obscure. In eubacteria, recycling is catalyzed by RRF (ribosome recycling factor) and EF-G (elongation factor G). By using cryoelectron microscopy, we have obtained two density maps, one of the RRF bound posttermination complex and one of the 50S subunit bound with both EF-G and RRF. Comparing the two maps, we found domain I of RRF to be in the same orientation, while domain II in the EF-G-containing 50S subunit is extensively rotated (similar to 60 degrees) compared to its orientation in the 70S complex. Mapping the 50S conformation of RRF onto the 70S posttermination complex suggests that it can disrupt the intersubunit bridges B2a and B3, and thus effect a separation of the two subunits. These observations provide the structural basis for the mechanism by which the posttermination complex is split into subunits by the joint action of RRF and EF-G.
引用
收藏
页码:663 / 674
页数:12
相关论文
共 56 条
[1]   Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome:: Functional implications [J].
Agrawal, RK ;
Sharma, MR ;
Kiel, MC ;
Hirokawa, G ;
Booth, TM ;
Spahn, CMT ;
Grassucci, RA ;
Kaji, A ;
Frank, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (24) :8900-8905
[2]   Conformational variability in Escherichia coli 70S ribosome as revealed by 3D cryo-electron microscopy [J].
Agrawal, RK ;
Lata, RK ;
Frank, J .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (01) :243-254
[3]   Visualization of elongation factor G on the Escherichia coli 70S ribosome:: The mechanism of translocation [J].
Agrawal, RK ;
Penczek, P ;
Grassucci, RA ;
Frank, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6134-6138
[4]   EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome [J].
Agrawal, RK ;
Heagle, AB ;
Penczek, P ;
Grassucci, RA ;
Frank, J .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (07) :643-647
[5]   A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit [J].
Belova, L ;
Tenson, T ;
Xiong, LQ ;
McNicholas, PM ;
Mankin, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :3726-3731
[6]   X-ray crystal structures of 70S ribosome functional complexes [J].
Cate, JH ;
Yusupov, MM ;
Yusupova, GZ ;
Earnest, TN ;
Noller, HF .
SCIENCE, 1999, 285 (5436) :2095-2104
[7]   Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex [J].
Cukras, AR ;
Southworth, DR ;
Brunelle, JL ;
Culver, GM ;
Green, R .
MOLECULAR CELL, 2003, 12 (02) :321-328
[8]   A ratchet-like inter-subunit reorganization of the ribosome during translocation [J].
Frank, J ;
Agrawal, RK .
NATURE, 2000, 406 (6793) :318-322
[9]   Ratchet-like movements between the two ribosomal subunits: Their implications in elongation factor recognition and tRNA translocation [J].
Frank, J ;
Agrawal, RK .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2001, 66 :67-75
[10]   SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields [J].
Frank, J ;
Radermacher, M ;
Penczek, P ;
Zhu, J ;
Li, YH ;
Ladjadj, M ;
Leith, A .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :190-199