Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks

被引:208
作者
Bucior, Benjamin J. [1 ]
Bobbitt, N. Scott [1 ]
Islamoglu, Timur [2 ]
Goswami, Subhadip [2 ]
Gopalan, Arun [1 ]
Yildirim, Taner [3 ]
Farha, Omar K. [1 ,2 ]
Bagheri, Neda [1 ,4 ]
Snurr, Randall Q. [1 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[4] Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
METHANE STORAGE; ADSORPTION; COEFFICIENT; REGRESSION; DESIGN; LIMITS;
D O I
10.1039/c8me00050f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low volumetric density of hydrogen is a major limitation to its use as a transportation fuel. Filling a fuel tank with nanoporous materials, such as metal-organic frameworks (MOFs), could greatly improve the deliverable capacity of these tanks if appropriate materials could be found. However, since MOFs can be made from many combinations of metal nodes, organic linkers, and functional groups, the design space of possible MOFs is enormous. Experimental characterization of thousands of MOFs is infeasible, and even conventional molecular simulations can be prohibitively expensive for large databases. In this work, we have developed a data-driven approach to accelerate materials screening and learn structure-property relationships. We report new descriptors for gas adsorption in MOFs derived from the energetics of MOFguest interactions. Using the bins of an energy histogram as features, we trained a sparse regression model to predict gas uptake in multiple MOF databases to an accuracy within 3 g L-1. The interpretable model parameters indicate that a somewhat weak attraction between hydrogen and the framework is ideal for cryogenic storage and release. Our machine learning method is more than three orders of magnitude faster than conventional molecular simulations, enabling rapid exploration of large numbers of MOFs. As a case study, we applied the method to screen a database of more than 50000 experimental MOF structures. We experimentally validated one of the top candidates identified from the accelerated screening, MFU-4l. This material exhibited a hydrogen deliverable capacity of 47 g L-1 (54 g L-1 simulated) when operating at storage conditions of 77 K, 100 bar and delivery at 160 K, 5 bar.
引用
收藏
页码:162 / 174
页数:13
相关论文
共 71 条
[1]  
Accelrys Software Inc, 2001, ACCELRYS SOFTWARE IN
[2]   Balancing gravimetric and volumetric hydrogen density in MOFs [J].
Ahmed, Alauddin ;
Liu, Yiyang ;
Purewal, Justin ;
Tran, Ly D. ;
Wong-Foy, Antek G. ;
Veenstra, Mike ;
Matzger, Adam J. ;
Siegel, Donald J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (11) :2459-2471
[3]  
[Anonymous], 2012, ARPA E METHANE OPPOR
[4]   Simulation and modelling of MOFs for hydrogen storage [J].
Basdogan, Yasemin ;
Keskin, Seda .
CRYSTENGCOMM, 2015, 17 (02) :261-275
[5]   High-Throughput Screening of Metal-Organic Frameworks for Hydrogen Storage at Cryogenic Temperature [J].
Bobbitt, N. Scott ;
Chen, Jiayi ;
Snurr, Randall Q. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (48) :27328-27341
[6]   High-throughput computational screening of nanoporous adsorbents for CO2 capture from natural gas [J].
Braun, Efrem ;
Zurhelle, Alexander F. ;
Thijssen, Wouter ;
Schnell, Sondre K. ;
Lin, Li-Chiang ;
Kim, Jihan ;
Thompson, Joshua A. ;
Smit, Berend .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2016, 1 (02) :175-188
[7]   High-throughput screening of small-molecule adsorption in MOF [J].
Canepa, Pieremanuele ;
Arter, Calvin A. ;
Conwill, Eliot M. ;
Johnson, Daniel H. ;
Shoemaker, Brian A. ;
Soliman, Karim Z. ;
Thonhauser, Timo .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (43) :13597-13604
[8]   In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm [J].
Chung, Yongchul G. ;
Gomez-Gualdron, Diego A. ;
Li, Peng ;
Leperi, Karson T. ;
Deria, Pravas ;
Zhang, Hongda ;
Vermeulen, Nicolaas A. ;
Stoddart, J. Fraser ;
You, Fengqi ;
Hupp, Joseph T. ;
Farha, Omar K. ;
Snurr, Randall Q. .
SCIENCE ADVANCES, 2016, 2 (10)
[9]   Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals [J].
Chung, Yongchul G. ;
Camp, Jeffrey ;
Haranczyk, Maciej ;
Sikora, Benjamin J. ;
Bury, Wojciech ;
Krungleviciute, Vaiva ;
Yildirim, Taner ;
Farha, Omar K. ;
Sholl, David S. ;
Snurr, Randall Q. .
CHEMISTRY OF MATERIALS, 2014, 26 (21) :6185-6192
[10]   Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks [J].
Cohen, Seth M. .
CHEMICAL REVIEWS, 2012, 112 (02) :970-1000