Separability and Killing tensors in Kerr-Taub-NUT-de Sitter metrics in higher dimensions

被引:70
作者
Chong, ZW
Gibbons, GW
Hü, L
Pope, CN [1 ]
机构
[1] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, College Stn, TX 77843 USA
[2] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England
关键词
D O I
10.1016/j.physletb.2004.07.066
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A generalisation of the four-dimensional Kerr-de Sitter metrics to include a NUT charge is well known, and is included within a class of metrics obtained by Plebanski. In this Letter, we study a related class of Kerr-Taub-NUT-de Sitter metrics in arbitrary dimensions D greater than or equal to 6, which contain three non-trivial continuous parameters, namely the mass, the NUT charge, and a (single) angular momentum. We demonstrate the separability of the Hamilton-Jacobi and wave equations, we construct a closely-related rank-2 Stackel-Killing tensor, and we show how the metrics can be written in a double Kerr-Schild form. Our results encompass the case of the Kerr-de Sitter metrics in arbitrary dimension, with all but one rotation parameter vanishing. Finally, we consider the real Euclidean-signature continuations of the metrics, and show how in a limit they give rise to certain recently-obtained complete non-singular compact Einstein manifolds. (C) 2005 Published by Elsevier B.V.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 14 条
[1]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[3]   THE GENERALIZED KERR SCHILD TRANSFORM IN 11-DIMENSIONAL SUPERGRAVITY [J].
DERELI, T ;
GURSES, M .
PHYSICS LETTERS B, 1986, 171 (2-3) :209-211
[4]  
GIBBONS GW, HEPTH0404008
[5]  
Hashimoto Y., HEPTH0402199
[6]   Rotation and the AdS-CFT correspondence [J].
Hawking, SW ;
Hunter, CJ ;
Taylor-Robinson, MM .
PHYSICAL REVIEW D, 1999, 59 (06)
[7]  
Klemm D, 1998, J HIGH ENERGY PHYS
[8]  
LU H, IN PRESS PHYS LETT B
[9]   COMPACT ROTATING GRAVITATIONAL INSTANTON [J].
PAGE, DN .
PHYSICS LETTERS B, 1978, 79 (03) :235-238
[10]  
PALMER R, 2002, GOEDESICS HIGHER DIM