Asymptotic properties of the solutions of a differential equation appearing in QED and QCD

被引:1
作者
Chadan, K
Martin, A
Stubbe, J
机构
[1] CEREM,DIV THEORET PHYS,CH-1211 GENEVA 23,SWITZERLAND
[2] ETH HONGGERBERG,INST THEORET PHYS,CH-8093 ZURICH,SWITZERLAND
[3] ENSLAPP,PHYS THEOR LAB,URA 1436 CNRS,ECOLE NORMALE SUPER,F-74941 ANNECY LE VIEUX,FRANCE
[4] UNIV SAVOIE,PHYS THEOR LAB,ENSLAPP,F-74941 ANNECY LE VIEUX,FRANCE
关键词
differential equation; QED; QCD;
D O I
10.1016/0550-3213(96)00427-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Stimulated by the study described in the preceding paper, we establish the asymptotic behaviour of the ratio h'(0)/h(0) for g --> infinity, where h(r) is a solution, vanishing at infinity, of the differential equation h ''(r) = ig omega(r)h(r) on the domain 0 less than or equal to r less than or equal to infinity and omega(r) = (1 - root r K-1(root r))/r. Some results are valid for more general omega's.
引用
收藏
页码:598 / 604
页数:7
相关论文
共 4 条
[1]   INDUCED GLUON RADIATION IN A QCD MEDIUM [J].
BAIER, R ;
DOKSHITZER, YL ;
PEIGNE, S ;
SCHIFF, D .
PHYSICS LETTERS B, 1995, 345 (03) :277-286
[2]   The Landau-Pomeranchuk-Migdal effect in QED [J].
Baier, R ;
Dokshitzer, YL ;
Mueller, AH ;
Peigne, S ;
Schiff, D .
NUCLEAR PHYSICS B, 1996, 478 (03) :577-597
[3]  
MAGNUS W, 1954, FORMULAS THEOREMS FU, P27
[4]  
VALIRON G, 1948, THEORIE FONCTIONS, P362