Adiabatic quantum computation is equivalent to standard quantum computation

被引:267
作者
Aharonov, Dorit [1 ]
Van Dam, Wim
Kempe, Julia
Landau, Zeph
Lloyd, Seth
Regev, Oded
机构
[1] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-91010 Jerusalem, Israel
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Univ Paris 11, CNRS, LRI UMR 8623, F-91400 Orsay, France
[4] CUNY City Coll, Dept Math, New York, NY 10031 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[6] Tel Aviv Univ, Comp Sci Dept, IL-69978 Tel Aviv, Israel
关键词
quantum computation; adiabatic computation; nearest neighbor interactions;
D O I
10.1137/S0097539705447323
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Adiabatic quantum computation has recently attracted attention in the physics and computer science communities, but its computational power was unknown. We describe an efficient adiabatic simulation of any given quantum algorithm, which implies that the adiabatic computation model and the conventional quantum computation model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor interactions. The equivalence between the models allows stating the main open problems in quantum computation using well-studied mathematical objects such as eigenvectors and spectral gaps of sparse matrices.
引用
收藏
页码:166 / 194
页数:29
相关论文
共 36 条
[1]  
ABERG J, 2004, ROBUSTNESS ADIABATIC
[2]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[3]  
Aharonov D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P20, DOI 10.1145/276698.276708
[4]  
Aharonov D., 2003, P 35 ANN ACM S THEOR, P20, DOI [DOI 10.1145/780542.780546, 10.1145/780542. 780546 (p. 3, DOI 10.1145/780542.780546(P.3]
[5]  
AMBAINIS A, 2004, ELEMENTARY PROOF QUA
[6]   Adiabatic theorem without a gap condition [J].
Avron, JE ;
Elgart, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) :445-463
[7]  
Bhatia R., 1997, GRAD TEXTS MATH, V169
[8]   Robustness of adiabatic quantum computation [J].
Childs, AM ;
Farhi, E ;
Preskill, J .
PHYSICAL REVIEW A, 2002, 65 (01) :123221-1232210
[9]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[10]  
FARHI E, 2002, QUANTUM ADIABATIC AL