Transport of organic anions across the basolateral membrane of proximal tubule cells

被引:218
作者
Burckhardt, BC [1 ]
Burckhardt, G [1 ]
机构
[1] Univ Gottingen, Zentrum Physiol, Abt Vegetat Physiol & Pathophysiol, D-37073 Gottingen, Germany
来源
REVIEWS OF PHYSIOLOGY, BIOCHEMISTRY AND PHARMACOLOGY, VOL 146 | 2003年 / 146卷
关键词
D O I
10.1007/s10254-002-0003-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter I (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na+-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na+ with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimereaptosuccinate (succimer). The organic anion transporter I (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular alpha-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, beta-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E-2 and F-2alpha. OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments.
引用
收藏
页码:95 / 158
页数:64
相关论文
共 216 条
  • [1] Apiwattanakul N, 1999, MOL PHARMACOL, V55, P847
  • [2] Human organic anion transporters mediate the transport of tetracycline
    Babu, E
    Takeda, M
    Narikawa, S
    Kobayashi, Y
    Yamamoto, T
    Cha, SH
    Sekine, T
    Sakthisekaran, D
    Endou, H
    [J]. JAPANESE JOURNAL OF PHARMACOLOGY, 2002, 88 (01) : 69 - 76
  • [3] Role of human organic anion transporter 4 in the transport of ochratoxin A
    Babu, E
    Takeda, M
    Narikawa, S
    Kobayashi, Y
    Enomoto, A
    Tojo, A
    Cha, SH
    Sekine, T
    Sakthisekaran, D
    Endou, H
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2002, 1590 (1-3): : 64 - 75
  • [4] Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene
    Bahn, A
    Prawitt, D
    Buttler, D
    Reid, G
    Enklaar, T
    Wolff, NA
    Ebbinghaus, C
    Hillemann, A
    Schulten, HJ
    Gunawan, B
    Füzesi, L
    Zabel, B
    Burckhardt, G
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 275 (02) : 623 - 630
  • [5] Interaction of the metal chelator 2,3-dimercapto-1-propanesulfonate with the rabbit multispecific organic anion transporter 1 (rbOAT1)
    Bahn, A
    Knabe, M
    Hagos, Y
    Rödiger, M
    Godehardt, S
    Graber-Neufeld, DS
    Evans, KK
    Burckhardt, G
    Wright, SH
    [J]. MOLECULAR PHARMACOLOGY, 2002, 62 (05) : 1128 - 1136
  • [6] Bahn A., 2001, Pfluegers Archiv European Journal of Physiology, V441, pR126
  • [7] Bahn A, 2001, FASEB J, V15, pA434
  • [8] RENAL METABOLISM OF CITRATE
    BARUCH, SB
    BURICH, RL
    EUN, CK
    KING, VF
    [J]. MEDICAL CLINICS OF NORTH AMERICA, 1975, 59 (03) : 569 - 582
  • [9] SENSITIVITY OF RAT RENAL LUMINAL AND CONTRALUMINAL SULFATE TRANSPORT-SYSTEMS TO DIDS
    BASTLEIN, C
    BURCKHARDT, G
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1986, 250 (02): : F226 - F234
  • [10] The mouse Na+-sulfate cotransporter gene Nas1 -: Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D
    Beck, L
    Markovich, D
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (16) : 11880 - 11890