Interplay between excitation kinetics and reaction-center dynamics in purple bacteria

被引:15
作者
Caycedo-Soler, Felipe [1 ]
Rodriguez, Ferney J. [1 ]
Quiroga, Luis [1 ]
Johnson, Neil F. [2 ]
机构
[1] Univ Los Andes, Dept Fis, Bogota, DC, Colombia
[2] Univ Miami, Dept Phys, Miami, FL 33126 USA
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
关键词
RHODOBACTER-SPHAEROIDES; ENERGY-TRANSFER; RHODOSPIRILLUM-PHOTOMETRICUM; PHOTOSYNTHETIC MEMBRANES; NATIVE MEMBRANES; SYSTEMS; SPECTROSCOPY; COHERENCE; APPARATUS; RUBRUM;
D O I
10.1088/1367-2630/12/9/095008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photosynthesis is arguably the fundamental process of life, since it enables energy from the Sun to enter the food chain on the Earth. It is a remarkable non-equilibrium process in which photons are converted to many-body excitations, which traverse a complex biomolecular membrane, where they are captured and fuel chemical reactions within a reaction center (RC) in order to produce nutrients. The precise nature of these dynamical processes-which lie at the interface between quantum and classical behavior and involve both noise and coordination-is still being explored. Here, we focus on a striking recent empirical finding concerning an illumination-driven transition in the biomolecular membrane architecture of the purple bacteria Rsp. photometricum. Using stochastic realizations to describe a hopping rate model for excitation transfer, we show numerically and analytically that this surprising shift in preferred architectures can be traced to the interplay between the excitation kinetics and the RC dynamics. The net effect is that the bacteria profit from efficient metabolism at low illumination intensities while using dissipation to avoid an oversupply of energy at high illumination intensities.
引用
收藏
页数:19
相关论文
共 31 条
[1]   The native architecture of a photosynthetic membrane [J].
Bahatyrova, S ;
Frese, RN ;
Siebert, CA ;
Olsen, JD ;
van der Werf, KO ;
van Grondelle, R ;
Niederman, RA ;
Bullough, PA ;
Otto, C ;
Hunter, CN .
NATURE, 2004, 430 (7003) :1058-1062
[2]   CHARACTERIZATION OF EXCITATION-ENERGY TRAPPING IN PHOTOSYNTHETIC PURPLE BACTERIA AT 77-K [J].
BERGSTROM, H ;
VANGRONDELLE, R ;
SUNDSTROM, V .
FEBS LETTERS, 1989, 250 (02) :503-508
[3]   Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport [J].
Caruso, F. ;
Chin, A. W. ;
Datta, A. ;
Huelga, S. F. ;
Plenio, M. B. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)
[4]   Light-Harvesting Mechanism of Bacteria Exploits a Critical Interplay between the Dynamics of Transport and Trapping [J].
Caycedo-Soler, Felipe ;
Rodriguez, Ferney J. ;
Quiroga, Luis ;
Johnson, Neil F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[5]  
Damjanovic A, 2000, INT J QUANTUM CHEM, V77, P139, DOI 10.1002/(SICI)1097-461X(2000)77:1<139::AID-QUA13>3.0.CO
[6]  
2-S
[7]   Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems [J].
Engel, Gregory S. ;
Calhoun, Tessa R. ;
Read, Elizabeth L. ;
Ahn, Tae-Kyu ;
Mancal, Tomas ;
Cheng, Yuan-Chung ;
Blankenship, Robert E. ;
Fleming, Graham R. .
NATURE, 2007, 446 (7137) :782-786
[8]   Energy Transfer in Light-Adapted Photosynthetic Membranes: From Active to Saturated Photosynthesis [J].
Fassioli, Francesca ;
Olaya-Castro, Alexandra ;
Scheuring, Simon ;
Sturgis, James N. ;
Johnson, Neil F. .
BIOPHYSICAL JOURNAL, 2009, 97 (09) :2464-2473
[9]   Femtosecond spectroscopy of photosynthetic light-harvesting systems [J].
Fleming, GR ;
vanGrondelle, R .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (05) :738-748
[10]   The size of the photosynthetic unit in purple bacteria [J].
Francke, C ;
Amesz, J .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (1-2) :347-352