Electronic and Ionic Wirings Versus the Insertion Reaction Contributions to the Polarization in LiFePO4 Composite Electrodes

被引:57
作者
Fongy, C. [1 ]
Jouanneau, S. [1 ]
Guyomard, D. [2 ]
Badot, J. C. [3 ]
Lestriez, B. [2 ]
机构
[1] CEA, Lab Composants Energie, F-38054 Grenoble, France
[2] Univ Nantes, CNRS, Inst Mat Jean Rouxel, F-44322 Nantes 3, France
[3] CNRS, ENSCP, Lab Chim Mat Condensee Paris, F-75231 Paris 5, France
关键词
LITHIUM; CATHODES; LIMITATIONS; PARAMETERS; TRANSPORT; DISCHARGE; EXPOSURE; KINETICS; SIZE; PH;
D O I
10.1149/1.3497353
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The different contributions to the polarization of a LiFePO4 electrode are experimentally discriminated in this work. The electrode total resistance is dominated at high rate by the contribution of the electronic and the ionic wires, the former being more important in the case of electrodes with low compaction, while the latter being more important in the case of electrodes with high compaction. A porosity in the 35%-40% range allows to minimize the electrode polarization. At low rate, the electrode resistance is dominated by the resistance to lithium insertion into the active mass and follows the predictions of M. Gaberscek and J. Jamnik [Solid State Ionics, 177, 2647 (2006)]. We show here that the resistance to lithium insertion decreases with the increase of the specific current, a feature that suggests an increase of the active particle conductivity with rate. The easy-handling methodology described in this work should enable a more rational optimization of the electrode formulation and processing conditions for better electrochemical performance. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3497353] All rights reserved.
引用
收藏
页码:A1347 / A1353
页数:7
相关论文
共 47 条
[1]   A Multiscale Description of the Electronic Transport within the Hierarchical Architecture of a Composite Electrode for Lithium Batteries [J].
Badot, Jean-Claude ;
Ligneel, Eric ;
Dubrunfaut, Olivier ;
Guyomard, Dominigue ;
Lestriez, Bernard .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (17) :2749-2758
[2]   Chemistry and electrochemistry of lithium iron phosphate [J].
Benoit, Charlotte ;
Franger, Sylvain .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :987-993
[3]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[4]   Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J].
Chen, Y. -H. ;
Wang, C. -W. ;
Zhang, X. ;
Sastry, A. M. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2851-2862
[5]   Effects of cathode impedance on the performances of power-oriented lithium ion batteries [J].
Chen, Yi-Shiun ;
Hu, Chi-Chang ;
Li, Yuan-Yao .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2010, 40 (02) :277-284
[6]   Moisture driven aging mechanism of LiFePO4 subjected to air exposure [J].
Cuisinier, Marine ;
Martin, Jean-Frederic ;
Dupre, Nicolas ;
Yamada, Atsuo ;
Kanno, Ryoji ;
Guyomard, Dominique .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :238-241
[7]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[8]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[9]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[10]   A novel coating technology for preparation of cathodes in Li-ion batteries [J].
Dominko, R ;
Gaberscek, M ;
Drofenik, J ;
Bele, M ;
Pejovnik, S .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (11) :A187-A190