A meta-analysis of responses of soil biota to global change

被引:332
作者
Blankinship, Joseph C. [1 ]
Niklaus, Pascal A. [2 ]
Hungate, Bruce A. [1 ,3 ]
机构
[1] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
[2] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland
[3] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA
基金
美国国家科学基金会;
关键词
Soil organisms; Soil food webs; Trophic structure; Body size; Elevated carbon dioxide; Warming; Altered precipitation; HABITABLE PORE-SPACE; ELEVATED ATMOSPHERIC CO2; CLIMATE-CHANGE; FOOD-WEB; CARBON-DIOXIDE; ECOSYSTEM RESPONSES; COMMUNITY STRUCTURE; MICROBIAL BIOMASS; GRASSLAND SOIL; NITROGEN MINERALIZATION;
D O I
10.1007/s00442-011-1909-0
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Global environmental changes are expected to impact the abundance of plants and animals aboveground, but comparably little is known about the responses of belowground organisms. Using meta-analysis, we synthesized results from over 75 manipulative experiments in order to test for patterns in the effects of elevated CO2, warming, and altered precipitation on the abundance of soil biota related to taxonomy, body size, feeding habits, ecosystem type, local climate, treatment magnitude and duration, and greenhouse CO2 enrichment. We found that the positive effect size of elevated CO2 on the abundance of soil biota diminished with time, whereas the negative effect size of warming and positive effect size of precipitation intensified with time. Trophic group, body size, and experimental approaches best explained the responses of soil biota to elevated CO2, whereas local climate and ecosystem type best explained responses to warming and altered precipitation. The abundance of microflora and microfauna, and particularly detritivores, increased with elevated CO2, indicative of microbial C limitation under ambient CO2. However, the effects of CO2 were smaller in field studies than in greenhouse studies and were not significant for higher trophic levels. Effects of warming did not depend on taxon or body size, but reduced abundances were more likely to occur at the colder and drier sites. Precipitation limited all taxa and trophic groups, particularly in forest ecosystems. Our meta-analysis suggests that the responses of soil biota to global change are predictable and unique for each global change factor.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 152 条
[1]   The freezer defrosting: global warming and litter decomposition rates in cold biomes [J].
Aerts, R. .
JOURNAL OF ECOLOGY, 2006, 94 (04) :713-724
[2]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[3]   Nutrient limitations to soil microbial biomass and activity in loblolly pine forests [J].
Allen, AS ;
Schlesinger, WH .
SOIL BIOLOGY & BIOCHEMISTRY, 2004, 36 (04) :581-589
[4]   Soil-carbon response to warming dependent on microbial physiology [J].
Allison, Steven D. ;
Wallenstein, Matthew D. ;
Bradford, Mark A. .
NATURE GEOSCIENCE, 2010, 3 (05) :336-340
[5]   PHYSIOLOGICAL METHOD FOR QUANTITATIVE MEASUREMENT OF MICROBIAL BIOMASS IN SOILS [J].
ANDERSON, JPE ;
DOMSCH, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (03) :215-221
[6]  
[Anonymous], 2002, COMMUNITIES ECOSYSTE
[7]  
[Anonymous], CRITIQUE ECOLOGY
[8]   Microbial response of an acid forest soil to experimental soil warming [J].
Arnold, SS ;
Fernandez, IJ ;
Rustad, LE ;
Zibilske, LM .
BIOLOGY AND FERTILITY OF SOILS, 1999, 30 (03) :239-244
[9]   Responses of spring phenology to climate change [J].
Badeck, FW ;
Bondeau, A ;
Böttcher, K ;
Doktor, D ;
Lucht, W ;
Schaber, J ;
Sitch, S .
NEW PHYTOLOGIST, 2004, 162 (02) :295-309
[10]   Temperature- and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland - patterns and mechanisms [J].
Bakonyi, G ;
Nagy, P .
GLOBAL CHANGE BIOLOGY, 2000, 6 (06) :697-707