Error bounds for a deterministic version of the Glimm scheme

被引:31
作者
Bressan, A
Marson, A
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Univ Brescia, Dipartimento Elettron Automaz, I-25123 Brescia, Italy
关键词
D O I
10.1007/s002050050088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the hyperbolic system of conservation laws u(t) + F(u)(x) = 0. Let u be the unique viscosity solution with initial condition u(0, x) = (u) over bar(x), and let u(epsilon) be an approximate solution constructed by the Glimm scheme, corresponding to the mesh sizes Delta x, Delta t = O(Delta x). With a suitable choice of the sampling sequence, we prove the estimate \\u(epsilon)(t, .) - u(t, .)\\(L1) = o(1).root Delta x\ln(Delta x)\.
引用
收藏
页码:155 / 176
页数:22
相关论文
共 14 条
[1]   CONTRACTIVE METRICS FOR NONLINEAR HYPERBOLIC SYSTEMS [J].
BRESSAN, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (02) :409-421
[2]   A CONTRACTIVE METRIC FOR SYSTEMS OF CONSERVATION-LAWS WITH COINCIDING SHOCK AND RAREFACTION CURVES [J].
BRESSAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (02) :332-366
[3]   GLOBAL-SOLUTIONS OF SYSTEMS OF CONSERVATION-LAWS BY WAVE-FRONT TRACKING [J].
BRESSAN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 170 (02) :414-432
[4]   THE UNIQUE LIMIT OF THE GLIMM SCHEME [J].
BRESSAN, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 130 (03) :205-230
[5]  
BRESSAN A, IN PRESS AM MATH SOC
[6]  
BRESSAN A, 1996, ARCH RATIOONAL MECH, V133, P1
[7]  
BRESSAN A, 1996, MATH CONT, V10, P21
[9]  
Glimm J., 1970, AM MATH SOC MEMOIR, V101
[10]  
HOFF D, 1985, T AM MATH SOC, V289, P611