Computational methods to identify miRNA targets

被引:47
作者
Hammell, Molly [1 ]
机构
[1] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA
基金
美国国家卫生研究院;
关键词
miRNA; miRNA target prediction; Computational methods; MICRORNA BINDING-SITES; GENE-EXPRESSION; MESSENGER-RNAS; PREDICTION; IDENTIFICATION; DETERMINANTS; SPECIFICITY; MECHANISMS; REPRESSION; SELECTION;
D O I
10.1016/j.semcdb.2010.01.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
MicroRNAs (miRNAs) are short RNA molecules that regulate the post-transcriptional expression of their target genes. This regulation may take the form of stable translational or degradation of the target transcript, although the mechanisms governing the outcome of miRNA-mediated regulation remain largely unknown. While it is becoming clear that miRNAs are core components of gene regulatory networks, elucidating precise roles for each miRNA within these networks will require an accurate means of identifying target genes and assessing the impact of miRNAs on individual targets. Numerous computational methods for predicting targets are currently available. These methods vary widely in their emphasis, accuracy, and ease of use for researchers. This review will focus on a comparison of the available computational methods in animals, with an emphasis on approaches that are informed by experimental analysis of microRNA: target complexes. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:738 / 744
页数:7
相关论文
共 71 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[3]   TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples [J].
Bandyopadhyay, Sanghamitra ;
Mitra, Ramkrishna .
BIOINFORMATICS, 2009, 25 (20) :2625-2631
[4]   Relief of microRNA-mediated translational repression in human cells subjected to stress [J].
Bhattacharyya, Suvendra N. ;
Habermacher, Regula ;
Martine, Ursula ;
Closs, Ellen I. ;
Filipowicz, Witold .
CELL, 2006, 125 (06) :1111-1124
[5]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[6]   MiR-15a and miR-16-1 cluster functions in human leukemia [J].
Calin, George A. ;
Cimmino, Amelia ;
Fabbri, Muller ;
Ferracin, Manuela ;
Wojcik, Sylwia E. ;
Shimizu, Masayoshi ;
Taccioli, Cristian ;
Zanesi, Nicola ;
Garzon, Ramiro ;
Aqeilan, Rami I. ;
Alder, Hansjuerg ;
Volinia, Stefano ;
Rassenti, Laura ;
Liu, Xiuping ;
Liu, Chang-gong ;
Kipps, Thomas J. ;
Negrini, Massimo ;
Croce, Carlo M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :5166-5171
[7]   Origins and Mechanisms of miRNAs and siRNAs [J].
Carthew, Richard W. ;
Sontheimer, Erik J. .
CELL, 2009, 136 (04) :642-655
[8]   Natural selection on human microRNA binding sites inferred from SNP data [J].
Chen, Kevin ;
Rajewsky, Nikolaus .
NATURE GENETICS, 2006, 38 (12) :1452-1456
[9]   Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps [J].
Chi, Sung Wook ;
Zang, Julie B. ;
Mele, Aldo ;
Darnell, Robert B. .
NATURE, 2009, 460 (7254) :479-486
[10]   Molecular architecture of a miRNA-regulated 3′ UTR [J].
Didiano, Dominic ;
Hobert, Oliver .
RNA, 2008, 14 (07) :1297-1317