A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro)

被引:46
作者
Crne, Alenka E. [1 ]
Weissert, Helmut [2 ]
Gorican, Spela [1 ]
Bernasconi, Stefano M. [2 ]
机构
[1] ZRC SAZU, Ivan Rakovec Inst Palaeontol, SI-1000 Ljubljana, Slovenia
[2] ETH, Inst Geol, CH-8092 Zurich, Switzerland
关键词
CARBON-ISOTOPE STRATIGRAPHY; QUEEN-CHARLOTTE-ISLANDS; TRIASSIC/JURASSIC BOUNDARY; OCEAN ACIDIFICATION; BRITISH-COLUMBIA; MASS EXTINCTION; SECTION; RADIOLARIANS; CONSTRAINTS; PLATFORM;
D O I
10.1130/B30157.1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Volcanic activity in the Central Atlantic magmatic province, resulting in an increased flux of CO2, SO2, and CH4 into the oceans and atmosphere, has been proposed as one of the mechanisms causing the biotic crisis at the Triassic-Jurassic boundary. Oceanic uptake of CO2 due to extreme greenhouse conditions should have had an impact on ocean chemistry and the position of the calcite compensation depth. In this study, we chose two pelagic sections from the Budva Basin as archives for paleoceanographic change across the Triassic-Jurassic boundary in deep-water settings. Our record represents the first documentation of a sudden termination of carbonate deposition across the Triassic-Jurassic boundary in a pelagic deep-water environment. Based on radiolarian biostratigraphy, the system boundary is placed at the sharp lithological contact between two pelagic formations, the Upper Triassic limestones and Lower Jurassic siliceous limestones alternating with shales. A rapid drop of carbonate content from 90% to less than 10% occurred contemporaneous with a negative anomaly in the stable carbon isotope record measured in both bulk carbonate (1.3%) and bulk organic matter (1.1%). The abrupt reduction of carbonate content in the Budva Basin was the result of either increased carbonate dissolution causing shoaling of the calcite compensation depth or reduced carbonate input due to biocalcification crisis. Both nonexclusive scenarios support the hypothesis of decreased ocean saturation with respect to calcium carbonate, which could be a direct consequence of increased CO2, SO2, and CH4 fluxes.
引用
收藏
页码:40 / 50
页数:11
相关论文
共 52 条
[1]   Phanerozoic biodiversity mass extinctions [J].
Bambach, Richard K. .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2006, 34 :127-155
[2]   The lower Triassic anachronistic carbonate facies in space and time [J].
Baud, Aymon ;
Richoz, Sylvain ;
Pruss, Sara .
GLOBAL AND PLANETARY CHANGE, 2007, 55 (1-3) :81-89
[3]   Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event [J].
Beerling, DJ ;
Berner, RA .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (03)
[4]   Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic-Jurassic boundary [J].
Berner, Robert A. ;
Beerling, David J. .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 244 (1-4) :368-373
[5]  
Carter E.S., 1998, Geological Survey of Canada Bulletin, V496, P1
[6]  
Carter E. S., 1993, MEMOIRES GEOLOGIE LA, V11, P1
[7]   Global correlation of the radiolarian faunal change across the Triassic-Jurassic boundary [J].
Carter, ES ;
Hori, RS .
CANADIAN JOURNAL OF EARTH SCIENCES, 2005, 42 (05) :777-790
[8]  
Crne AE, 2008, B SOC GEOL ITAL, V127, P389
[9]  
DArgenio B., 1971, NAFTA ZAGREB, V22, P195
[10]   Stratigraphy and palaeoenvironmental analysis of the Triassic-Jurassic transition in the western Southern Alps (Northern Italy) [J].
Galli, Maria Teresa ;
Jadoul, Flavio ;
Bernasconi, Stefano M. ;
Cirilli, Simonetta ;
Weissert, Helmut .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 244 (1-4) :52-70