Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae

被引:43
作者
Lennon, JC
Wind, M
Saunders, L
Hock, MB
Reines, D
机构
[1] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Grad Program Genet & Mol Biol, Atlanta, GA 30322 USA
关键词
D O I
10.1128/MCB.18.10.5771
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elongation factor SII interacts with RNA polymerase II and enables it to transcribe through arrest sites in vitro. The set of genes dependent upon SII function in vivo and the effects on RNA levels of mutations in different components of the elongation machinery are poorly understood. Using yeast lacking SII and bearing a conditional allele of RPB2, the gene encoding the second largest subunit of RNA polymerase II, we describe a genetic interaction between SII and RPB2. An SII gene disruption or the rpb2-10 mutation, which yields an arrest-prone enzyme in vitro, confers sensitivity to 6-azauracil (6AU) a drug that depresses cellular nucleoside triphosphates. Cells with both mutations had reduced levels of total poly(A)(+) RNA and specific mRNAs and displayed a synergistic level of drug hypersensitivity. In cells in which the SII gene was inactivated, rpb2-10 became dominant, as if template-associated mutant RNA polymerase II hindered the ability of wild-type polymerase to transcribe. Interestingly, while 6AU depressed RNA levels in both wild-type and mutant cells, wild-type cells reestablished normal RNA levels, whereas double-mutant cells could not. This work shows the importance of an optimally functioning elongation machinery for in vivo RNA synthesis and identifies an initial set of candidate genes with which SII-dependent transcription can be studied.
引用
收藏
页码:5771 / 5779
页数:9
相关论文
共 48 条
[1]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[2]  
[Anonymous], METHOD ENZYMOL
[3]   GENETIC INTERACTION BETWEEN TRANSCRIPTION ELONGATION-FACTOR TFIIS AND RNA POLYMERASE-II [J].
ARCHAMBAULT, J ;
LACROUTE, F ;
RUET, A ;
FRIESEN, JD .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) :4142-4152
[4]   ISOLATION AND PHENOTYPIC ANALYSIS OF CONDITIONAL-LETHAL, LINKER-INSERTION MUTATIONS IN THE GENE ENCODING THE LARGEST SUBUNIT OF RNA POLYMERASE-II IN SACCHAROMYCES-CEREVISIAE [J].
ARCHAMBAULT, J ;
DREBOT, MA ;
STONE, JC ;
FRIESEN, JD .
MOLECULAR & GENERAL GENETICS, 1992, 232 (03) :408-414
[5]   THE RNA-POLYMERASE-II ELONGATION COMPLEX [J].
ASO, T ;
CONAWAY, JW ;
CONAWAY, RC .
FASEB JOURNAL, 1995, 9 (14) :1419-1428
[6]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[7]   ROLE OF THE MAMMALIAN TRANSCRIPTION FACTOR-IIF, FACTOR-IIS, AND FACTOR-IIX DURING ELONGATION BY RNA POLYMERASE-II [J].
BENGAL, E ;
FLORES, O ;
KRAUSKOPF, A ;
REINBERG, D ;
ALONI, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (03) :1195-1206
[8]  
BRADSHER JN, 1993, J BIOL CHEM, V268, P25587
[9]   A GENERAL TOPOISOMERASE I-DEPENDENT TRANSCRIPTIONAL REPRESSION IN THE STATIONARY PHASE IN YEAST [J].
CHODER, M .
GENES & DEVELOPMENT, 1991, 5 (12A) :2315-2326
[10]   A PORTION OF RNA POLYMERASE-II MOLECULES HAS A COMPONENT ESSENTIAL FOR STRESS RESPONSES AND STRESS SURVIVAL [J].
CHODER, M ;
YOUNG, RA .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (11) :6984-6991