Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants

被引:118
作者
Kobayashi, T
Nakayama, Y
Itai, RN
Nakanishi, H
Yoshihara, T
Mori, S
Nishizawa, NK
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Lab Plant Biotechnol, Bunkyo Ku, Tokyo 1138657, Japan
[2] Cent Res Inst Elect Power Ind, Dept Biosci, Chiba 2701194, Japan
[3] Univ Tokyo, Grad Sch Agr & Life Sci, Lab Plant Mol Physiol, Bunkyo Ku, Tokyo 1138657, Japan
[4] Japan Sci & Technol Corp, CREST, Tokyo, Japan
关键词
cis-acting elements; Fe-deficiency-inducible expression; IDS2; phytosiderophore; promoter analysis; root-specific expression;
D O I
10.1046/j.1365-313X.2003.01920.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The molecular mechanisms of plant responses to iron (Fe) deficiency remain largely unknown. To identify the cis-acting elements responsible for Fe-deficiency-inducible expression in higher plants, the barley IDS2 (iron deficiency specific clone no. 2) gene promoter was analyzed using a transgenic tobacco system. Deletion analysis revealed that the sequence between -272 and -91 from the translational start site (-272/-91) was both sufficient and necessary for specific expression in tobacco roots. Further deletion and linker-scanning analysis of this region clearly identified two cis-acting elements: iron-deficiency-responsive element 1 (IDE1) at -153/-136 (ATCAAGCATGCTTCTTGC) and IDE2 at -262/-236 (TTGAACGGCAAGTTTCACGCTGTCACT). The co-existence of IDE1 and IDE2 was essential for specific expression when the -46/+8 region (relative to the transcriptional start site) of the CaMV 35S promoter was used as a minimal promoter. Expression occurred mainly in the root pericycle, endodermis, and cortex. When the -90/+8 region of the CaMV 35S promoter was fused, the -272/-227 region, which consists of IDE2 and an additional 19 bp, could drive Fe-deficiency-inducible expression without IDE1 throughout almost the entire root. The principal modules of IDE1 and IDE2 were homologous. Sequences homologous to IDE1 were also found in many other Fe-deficiency-inducible promoters, including: nicotianamine aminotransferase (HvNAAT)-A, HvNAAT-B, nicotianamine synthase (HvNAS1), HvIDS3, OsNAS1, OsNAS2, OsIRT1, AtIRT1, and AtFRO2, suggesting the conservation of cis-acting elements in various genes and species. The identification of novel cis-acting elements, IDE1 and IDE2, will provide powerful tools to clarify the molecular mechanisms regulating Fe homeostasis in higher plants.
引用
收藏
页码:780 / 793
页数:14
相关论文
共 69 条
[1]   The wheat transcriptional activator SPA: A seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes [J].
Albani, D ;
HammondKosack, MCU ;
Smith, C ;
Conlan, S ;
Colot, V ;
Holdsworth, M ;
Bevan, MW .
PLANT CELL, 1997, 9 (02) :171-184
[2]  
[Anonymous], IRON TRANSPORT MICRO
[3]   REGULATED GENES IN TRANSGENIC PLANTS [J].
BENFEY, PN ;
CHUA, NH .
SCIENCE, 1989, 244 (4901) :174-181
[4]   THE CAMV S-35 ENHANCER CONTAINS AT LEAST 2 DOMAINS WHICH CAN CONFER DIFFERENT DEVELOPMENTAL AND TISSUE-SPECIFIC EXPRESSION PATTERNS [J].
BENFEY, PN ;
REN, L ;
CHUA, NH .
EMBO JOURNAL, 1989, 8 (08) :2195-2202
[5]   COMBINATORIAL AND SYNERGISTIC PROPERTIES OF CAMV 35S-ENHANCER SUBDOMAINS [J].
BENFEY, PN ;
REN, L ;
CHUA, NH .
EMBO JOURNAL, 1990, 9 (06) :1685-1696
[6]   TISSUE-SPECIFIC EXPRESSION FROM CAMV 35S-ENHANCER SUBDOMAINS IN EARLY STAGES OF PLANT DEVELOPMENT [J].
BENFEY, PN ;
REN, L ;
CHUA, NH .
EMBO JOURNAL, 1990, 9 (06) :1677-1684
[7]   Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF [J].
Boyle, B ;
Brisson, N .
PLANT CELL, 2001, 13 (11) :2525-2537
[8]   Cloning an iron-regulated metal transporter from rice [J].
Bughio, N ;
Yamaguchi, H ;
Nishizawa, NK ;
Nakanishi, H ;
Mori, S .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (374) :1677-1682
[9]   Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation [J].
Connolly, EL ;
Fett, JP ;
Guerinot, ML .
PLANT CELL, 2002, 14 (06) :1347-1357
[10]   Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake [J].
Curie, C ;
Panaviene, Z ;
Loulergue, C ;
Dellaporta, SL ;
Briat, JF ;
Walker, EL .
NATURE, 2001, 409 (6818) :346-349