Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices

被引:330
作者
Mirlin, AD
Fyodorov, YV
Dittes, FM
Quezada, J
Seligman, TH
机构
[1] UNIV ESSEN GESAMTHSCH,FACHBEREICH PHYS,D-45177 ESSEN,GERMANY
[2] FORSCHUNGSZENTRUM ROSSENDORF EV,INST KERN & HADRONENPHYS,D-01314 DRESDEN,GERMANY
[3] TECNOL MONTEREY,GUADALAJARA,JALISCO,MEXICO
[4] UNIV NACL AUTONOMA MEXICO,INST FIS,LAB CUERNAVACA,CUERNAVACA 62191,MORELOS,MEXICO
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.54.3221
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study statistical properties of the ensemble of large N x N random matrices whose entries H-ij decrease in a power-law fashion H-ij similar to \i-j\(-alpha). Mapping the problem onto a nonlinear a model with nonlocal interaction, we find a transition from localized to extended states at alpha=1. At this critical value of alpha the system exhibits multifractality and spectral statistics intermediate between the Wigner-Dyson and Poisson statistics. These features are reminiscent of those typical of the mobility edge of disordered conductors. We find a continuous set of critical theories at alpha=1, parametrized by the value of the coupling constant of the sigma model. At alpha>1 all states are expected to be localized with integrable power-law tails. At the same time, for 1<alpha<3/2 the wave packet spreading at a short time scale is superdiffusive: [\r\] similar to t(1/(2 alpha-1)), which leads to a modification of the Altshuler-Shklovskii behavior of the spectral correlation function. At 1/2<alpha<1 the statistical properties of eigenstates are similar to those in a metallic sample in d=(alpha-1/2)(-1) dimensions. Finally, the region alpha<1/2 is equivalent to the corresponding Gaussian ensemble of random matrices (alpha=0). The theoretical predictions ate compared with results of numerical simulations.
引用
收藏
页码:3221 / 3230
页数:10
相关论文
共 38 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   SPECTRAL STATISTICS - FROM DISORDERED TO CHAOTIC SYSTEMS [J].
AGAM, O ;
ALTSHULER, BL ;
ANDREEV, AV .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4389-4392
[3]   SPECTRAL STATISTICS OF NONDIFFUSIVE DISORDERED ELECTRON-SYSTEMS - A COMPREHENSIVE APPROACH [J].
ALTLAND, A ;
GEFEN, Y .
PHYSICAL REVIEW B, 1995, 51 (16) :10671-10690
[4]   SPECTRAL STATISTICS IN NONDIFFUSIVE REGIMES [J].
ALTLAND, A ;
GEFEN, Y .
PHYSICAL REVIEW LETTERS, 1993, 71 (20) :3339-3342
[5]  
Altshuler B. L., 1991, MESOSCOPIC PHENOMENA
[6]  
ALTSHULER BL, 1986, ZH EKSP TEOR FIZ, V64, P127
[7]   SPECTRAL STATISTICS BEYOND RANDOM-MATRIX THEORY [J].
ANDREEV, AV ;
ALTSHULER, BL .
PHYSICAL REVIEW LETTERS, 1995, 75 (05) :902-905
[8]   FLUCTUATIONS OF THE NUMBER OF ENERGY-LEVELS AT THE MOBILITY EDGE [J].
ARONOV, AG ;
MIRLIN, AD .
PHYSICAL REVIEW B, 1995, 51 (09) :6131-6134
[9]   Impurity states and the absence of quasiparticle localization in disordered d-wave superconductors [J].
Balatsky, AV ;
Salkola, MI .
PHYSICAL REVIEW LETTERS, 1996, 76 (13) :2386-2389
[10]   RENORMALIZATION OF NONLINEAR SIGMA MODEL IN 2 + EPSILON DIMENSIONS [J].
BREZIN, E ;
ZINNJUSTIN, J ;
GUILLOU, JCL .
PHYSICAL REVIEW D, 1976, 14 (10) :2615-2621