Artificial Intelligence for Medical Image Analysis: A Guide for Authors and Reviewers

被引:113
作者
England, Joseph R. [1 ]
Cheng, Phillip M. [2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[2] USC, Dept Radiol, Keck Sch Med, 1441 Eastlake Ave,Ste 2315B, Los Angeles, CA 90033 USA
关键词
artificial intelligence; deep learning; machine learning; technology assessment; OPERATING CHARACTERISTIC CURVES; PERFORMANCE; AREAS;
D O I
10.2214/AJR.18.20490
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. The purpose of this article is to highlight best practices for writing and reviewing articles on artificial intelligence for medical image analysis. CONCLUSION. Artificial intelligence is in the early phases of application to medical imaging, and patient safety demands a commitment to sound methods and avoidance of rhetorical and overly optimistic claims. Adherence to best practices should elevate the quality of articles submitted to and published by clinical journals.
引用
收藏
页码:513 / 519
页数:7
相关论文
共 48 条
[1]  
[Anonymous], MURA DATASET RADIOLO
[2]  
[Anonymous], 2014, INT C LEARN REPR WOR
[3]  
[Anonymous], PROC CVPR IEEE
[4]  
[Anonymous], 2012, Learning_from_data
[5]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[6]  
[Anonymous], 2017, COMMUN ACM, DOI DOI 10.1145/3065386
[7]  
[Anonymous], 2018, A comprehensive analysis of deep regression
[8]  
[Anonymous], INT J EPIDEMIOL
[9]  
[Anonymous], VERY DEEP CONVOLUTIO
[10]  
[Anonymous], PEDIAT BONE AGE ASSE