Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping

被引:245
作者
Bloch, AM [1 ]
Chang, DE
Leonard, NE
Marsden, JE
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Lyapunov methods; mechanical systems; nonlinear control; stabilization; tracking;
D O I
10.1109/9.956051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We extend the method of controlled Lagrangians (CL) to include potential shaping, which achieves complete state-space asymptotic stabilization of mechanical systems. The CL method deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline.
引用
收藏
页码:1556 / 1571
页数:16
相关论文
共 47 条
[1]  
[Anonymous], P 38 IEEE C DEC CONT
[2]  
Astrom K. J., 1996, P 13 IFAC WORLD C SA
[3]  
Auckly D, 2000, COMMUN PUR APPL MATH, V53, P354
[4]  
Baillieul J., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P1664, DOI 10.1109/CDC.1999.830263
[5]  
BAILLIEUL J, 1998, MATH CONTROL THEORY, V1, P1
[6]  
BAILLIEUL J, 1993, FIELDS I COMM, V1, P1
[7]  
Bloch AM, 1998, IEEE DECIS CONTR P, P1446, DOI 10.1109/CDC.1998.758490
[8]  
Bloch AM, 1997, IEEE DECIS CONTR P, P2356, DOI 10.1109/CDC.1997.657135
[9]   STABILIZATION OF RIGID BODY DYNAMICS BY INTERNAL AND EXTERNAL TORQUES [J].
BLOCH, AM ;
KRISHNAPRASAD, PS ;
MARSDEN, JE ;
DEALVAREZ, GS .
AUTOMATICA, 1992, 28 (04) :745-756
[10]  
Bloch AM, 1997, CURRENT AND FUTURE DIRECTIONS IN APPLIED MATHEMATICS, P43