Thin film synthesis and properties of copper nitride, a metastable semiconductor

被引:121
作者
Caskey, Christopher M. [1 ,2 ]
Richards, Ryan M. [2 ]
Ginley, David S. [1 ]
Zakutayev, Andriy [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA
关键词
GROWTH; DEPOSITION; STABILITY; EPITAXY; TIN;
D O I
10.1039/c4mh00049h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper nitride (Cu3N) thin films were grown by reactive sputtering using a high-throughput combinatorial approach with orthogonal gradients of substrate temperature and target-substrate distance. This technique enables high-throughput modulation of the anion activity, and is broadly applicable to the combinatorial synthesis of other materials. Stable, phase pure Cu3N thin films were grown on glass substrates at temperatures between 150 and 200 degrees C, depending on the target-substrate distance. These 00L oriented thin films have 10(-3) S cm(-1) conductivity and 1.5 eV optical absorption onset, making Cu3N interesting for future studies in the context of solar energy conversion applications. The analysis of the synthetic results provides insights into the thermodynamic origins of the growth of metastable Cu3N, and sets a nitrogen chemical potential of +1 eV per atom as a lower limit of the anion activity that can be achieved in non-equilibrium thin film growth of metastable materials. The first step towards testing the transferability of this result to other materials was made by reactive sputtering of tin, antimony, and bismuth in nitrogen.
引用
收藏
页码:424 / 430
页数:7
相关论文
共 50 条
[1]  
[Anonymous], 2012, PROC IEEE 11 INT SOL
[2]   Growth and properties of Cu3N films and Cu3N/γ′-Fe4N bilayers [J].
Borsa, DM ;
Grachev, S ;
Presura, C ;
Boerma, DO .
APPLIED PHYSICS LETTERS, 2002, 80 (10) :1823-1825
[3]   Mind the gap! [J].
Bredas, Jean-Luc .
MATERIALS HORIZONS, 2014, 1 (01) :17-19
[4]  
Chase M.W. J., 1998, NIST Web B
[5]   A combinatorial approach in oxide/semiconductor interface research for future electronic devices [J].
Chikyow, T ;
Ahmet, P ;
Nakajima, K ;
Koida, T ;
Takakura, M ;
Yoshimoto, M ;
Koinuma, H .
APPLIED SURFACE SCIENCE, 2002, 189 (3-4) :284-291
[6]   Structural, Optical, and Transport Properties of α- and β-Ag3VO4 [J].
Cloet, V. ;
Raw, A. ;
Poeppelmeier, K. R. ;
Trimarchi, G. ;
Peng, H. ;
Im, J. ;
Freeman, A. J. ;
Perry, N. H. ;
Mason, T. O. ;
Zakutayev, A. ;
Ndione, P. F. ;
Ginley, D. S. ;
Perkins, J. D. .
CHEMISTRY OF MATERIALS, 2012, 24 (17) :3346-3354
[7]   Deposition and characterization of metastable Cu3N layers for applications in optical data storage [J].
Cremer, R ;
Witthaut, M ;
Neuschütz, D ;
Trappe, C ;
Laurenzis, M ;
Winkler, O ;
Kurz, H .
MIKROCHIMICA ACTA, 2000, 133 (1-4) :299-302
[8]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/nmat3568, 10.1038/NMAT3568]
[9]  
Darwent B. deB., 1970, THESIS NBS US
[10]   Electrical conductivity and photoreflectance of nanocrystalline copper nitride thin films deposited at low temperature [J].
Du, Y ;
Ji, AL ;
Ma, LB ;
Wang, YQ ;
Cao, Z .
JOURNAL OF CRYSTAL GROWTH, 2005, 280 (3-4) :490-494