Assessing the bioaccumulation of contaminants from sediments of the upper Mississippi River using field-collected oligochaetes and laboratory-exposed Lumbriculus variegatus

被引:58
作者
Brunson, EL [1 ]
Canfield, TJ [1 ]
Dwyer, FJ [1 ]
Ingersoll, CG [1 ]
Kemble, NE [1 ]
机构
[1] US Geol Survey, Environm Contaminants Res Ctr, Columbia, MO 65201 USA
关键词
D O I
10.1007/s002449900367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Concern with the redistribution of contaminants associated with sediment in the upper Mississippi River (UMR) arose after the flood of 1993. This project is designed to evaluate the status of sediments in the UMR and is one article in a series designed to assess the extent of sediment contamination in navigational pools of the river. Companion articles evaluate sediment toxicity and benthic community composition in navigation pools of the river. The objectives of the present study were to: (1) to assess the bioaccumulation of sediment-associated contaminants in the UMR using laboratory exposures with the oligochaete Lumbriculus variegatus, and (2) to compare bioaccumulation in laboratory-exposed oligochaetes to field-collected oligochaetes. Sediment samples and native oligochaetes were collected from 23 navigational pools on the Upper Mississippi River and the Saint Croix River. Contaminant concentrations measured in the L. variegatus after 28-day exposures to sediment in the laboratory were compared to contaminant concentrations in field-collected oligochaetes from the 13 pools where these sediments were collected. Contaminant concentrations were relatively low in sediments and tissues from the pools evaluated. Only polycyclic aromatic hydrocarbons (PAHs) and total polychlorinated biphenyls (PCBs) were frequently measured above detection limits. The majority of the biota-sediment-accumulation factors (BSAFs) for PAHs were within a range of about 1.0 to 2.6, suggesting that the theoretical BSAF value of 1.7 could be used to predict these mean BSAFs with a reasonable degree of certainty. A positive correlation was observed between lipid-normalized concentrations of PAHs detected in laboratory-exposed and field-collected oligochaetes across all sampling locations. Rank correlations for concentrations of individual compounds between laboratory-exposed and field-collected oligochaetes were strongest for benzo(e)pyrene, perylene, benzo(b,k)fluoranthene, and pyrene. About 90% of the paired PAH concentrations in laboratory-exposed and field-collected oligochaetes were within a factor of three of one another indicating laboratory results could be extrapolated to the field with a reasonable degree of certainty.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 29 条
[1]  
American Society for Testing and Materials ASTM G32, 1998, ANN BOOK ASTM STAND
[2]  
ANKLEY GT, 1993, ARCH ENVIRON CON TOX, V25, P12, DOI 10.1007/BF00230705
[3]   INTEGRATED ASSESSMENT OF CONTAMINATED SEDIMENTS IN THE LOWER FOX RIVER AND GREEN BAY, WISCONSIN [J].
ANKLEY, GT ;
LODGE, K ;
CALL, DJ ;
BALCER, MD ;
BROOKE, LT ;
COOK, PM ;
KREIS, RG ;
CARLSON, AR ;
JOHNSON, RD ;
NIEMI, GJ ;
HOKE, RA ;
WEST, CW ;
GIESY, JP ;
JONES, PD ;
FUYING, ZC .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 1992, 23 (01) :46-63
[4]   PREDICTING THE TOXICITY OF BULK SEDIMENTS TO AQUATIC ORGANISMS WITH AQUEOUS TEST FRACTIONS - PORE WATER VS ELUTRIATE [J].
ANKLEY, GT ;
SCHUBAUERBERIGAN, MK ;
DIERKES, JR .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1991, 10 (10) :1359-1366
[5]  
BROOKS JM, 1989, 3 NOAAA
[6]  
BRUNSON EL, 1993, 14 ANN M SETAC HOUST
[7]  
Call D. J., 1991, SEDIMENT QUALITY EVA
[8]   Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach [J].
Canfield, TJ ;
Brunson, EL ;
Dwyer, FJ ;
Ingersoll, CG ;
Kemble, NE .
ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 1998, 35 (02) :202-212
[9]   THE ROLE OF ACID-VOLATILE SULFIDE IN DETERMINING CADMIUM BIOAVAILABILITY AND TOXICITY IN FRESH-WATER SEDIMENTS [J].
CARLSON, AR ;
PHIPPS, GL ;
MATTSON, VR ;
KOSIAN, PA ;
COTTER, AM .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1991, 10 (10) :1309-1319
[10]  
INGERSOLL CG, 1995, ENVIRON TOXICOL CHEM, V14, P1885, DOI [10.1897/1552-8618(1995)14[1885:TABOSC]2.0.CO