An in vitro assay for the selective endoplasmic reticulum associated degradation of an unglycosylated secreted protein

被引:3
作者
Brodsky, JL [1 ]
机构
[1] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ERAD; proteasome; Sec61; translocation; molecular chaperones; degradation; Hsp70; protein quality control; yeast; secretion;
D O I
10.1016/j.ymeth.2004.10.007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The endoplasmic reticulum (ER) represents the first compartment into which nascent secreted proteins traffic, and not coincidentally the ER lumen houses a high concentration of factors that facilitate protein folding, such as molecular chaperones. To off-set the potentially lethal consequences of mis-folded secreted protein accumulation, aberrant proteins may be selected for degradation via a process known as ER associated degradation (ERAD). After their selection ERAD substrates are retro-translocated back to the cytoplasm and then degraded by the 26S proteasome. Key features of the selection, retro-translocation, and degradation steps that constitute the ERAD pathway were elucidated through the development of an in vitro ERAD assay. In this assay the fates of two yeast proteins can be distinguished after their translocation, or import into ER-derived microsomes. Whereas a wild type, glycosylated protein ('' Gp alpha F '') is stable, a non-glycosylated version of the same protein ('' p alpha F '') is rapidly degraded when microsomes containing radiolabeled forms of these substrates are incubated in cytosol and ATP. The purpose of this chapter is first to discuss the experimental findings from the use of the in vitro assay, and then to describe the assay in detail. Finally, future potential uses of the in vitro system are illustrated. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:354 / 359
页数:6
相关论文
共 27 条
[1]   COPII - A MEMBRANE COAT FORMED BY SEC PROTEINS THAT DRIVE VESICLE BUDDING FROM THE ENDOPLASMIC-RETICULUM [J].
BARLOWE, C ;
ORCI, L ;
YEUNG, T ;
HOSOBUCHI, M ;
HAMAMOTO, S ;
SALAMA, N ;
REXACH, MF ;
RAVAZZOLA, M ;
AMHERDT, M ;
SCHEKMAN, R .
CELL, 1994, 77 (06) :895-907
[2]   The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct [J].
Brodsky, JL ;
Werner, ED ;
Dubas, ME ;
Goeckeler, JL ;
Kruse, KB ;
McCracken, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3453-3460
[3]   GLYCOSYLATION AND STRUCTURE OF THE YEAST MF-ALPHA-1 ALPHA-FACTOR PRECURSOR IS IMPORTANT FOR EFFICIENT TRANSPORT THROUGH THE SECRETORY PATHWAY [J].
CAPLAN, S ;
GREEN, R ;
ROCCO, J ;
KURJAN, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (02) :627-635
[4]  
DEMARTINO GN, 1994, J BIOL CHEM, V269, P20878
[5]   SEC62 ENCODES A PUTATIVE MEMBRANE-PROTEIN REQUIRED FOR PROTEIN TRANSLOCATION INTO THE YEAST ENDOPLASMIC-RETICULUM [J].
DESHAIES, RJ ;
SCHEKMAN, R .
JOURNAL OF CELL BIOLOGY, 1989, 109 (06) :2653-2664
[6]   Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope ER network in yeast [J].
Enenkel, C ;
Lehmann, A ;
Kloetzel, PM .
EMBO JOURNAL, 1998, 17 (21) :6144-6154
[7]   The action of molecular chaperones in the early secretory pathway [J].
Fewell, SW ;
Travers, KJ ;
Weissman, JS ;
Brodsky, JL .
ANNUAL REVIEW OF GENETICS, 2001, 35 :149-191
[8]   Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase [J].
Gillece, P ;
Luz, JM ;
Lennarz, WJ ;
de la Cruz, FJ ;
Römisch, K .
JOURNAL OF CELL BIOLOGY, 1999, 147 (07) :1443-1456
[9]   Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein [J].
Hampton, RY ;
Gardner, RG ;
Rine, J .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (12) :2029-2044
[10]   INVITRO PROTEIN TRANSLOCATION ACROSS THE YEAST ENDOPLASMIC-RETICULUM - ATP-DEPENDENT POSTTRANSLATIONAL TRANSLOCATION OF THE PREPRO-ALPHA-FACTOR [J].
HANSEN, W ;
GARCIA, PD ;
WALTER, P .
CELL, 1986, 45 (03) :397-406