Entanglement renormalization

被引:820
作者
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[2] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.99.220405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a real-space renormalization group (RG) transformation for quantum systems on a D-dimensional lattice. The transformation partially disentangles a block of sites before coarse-graining it into an effective site. Numerical simulations with the ground state of a 1D lattice at criticality show that the resulting coarse-grained sites require a Hilbert space dimension that does not grow with successive RG transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each relevant length scale makes an equivalent contribution to the entanglement of a block.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 1966, Physics Physique Fizika, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.2.263
[2]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[3]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[4]  
EVENBLY G, ARXIV07100692, P12720
[5]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[6]   Single-electron transport in electrically tunable nanomagnets [J].
Fernandez-Rossier, J. ;
Aguado, Ramon .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[7]   Renormalization group theory: Its basis and formulation in statistical physics [J].
Fisher, ME .
REVIEWS OF MODERN PHYSICS, 1998, 70 (02) :653-681
[8]   Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture [J].
Jin, BQ ;
Korepin, VE .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :79-95
[9]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537
[10]   The density-matrix renormalization group [J].
Schollwöck, U .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :259-315