The effects of molecular noise and size control on variability in the budding yeast cell cycle

被引:349
作者
Di Talia, Stefano [1 ]
Skotheim, Jan M. [1 ]
Bean, James M. [1 ]
Siggia, Eric D. [1 ]
Cross, Frederick R. [1 ]
机构
[1] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/nature06072
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular noise in gene expression can generate substantial variability in protein concentration(1). However, its effect on the precision of a natural eukaryotic circuit such as the control of cell cycle remains unclear. We use single-cell imaging of fluorescently labelled budding yeast to measure times from division to budding (G1) and from budding to the next division. The variability in G1 decreases with the square root of the ploidy through a 1N/2N/4N ploidy series, consistent with simple stochastic models for molecular noise. Also, increasing the gene dosage of G1 cyclins decreases the variability in G1. A new single-cell reporter for cell protein content allows us to determine the contribution to temporal G1 variability of deterministic size control (that is, smaller cells extending G1). Cell size control contributes significantly to G1 variability in daughter cells but not in mother cells. However, even in daughters, size-independent noise is the largest quantitative contributor to G1 variability. Exit of the transcriptional repressor Whi5 from the nucleus partitions G1 into two temporally uncorrelated and functionally distinct steps. The first step, which depends on the G1 cyclin gene CLN3, corresponds to noisy size control that extends G1 in small daughters, but is of negligible duration in mothers. The second step, whose variability decreases with increasing CLN2 gene dosage, is similar in mothers and daughters. This analysis decomposes the regulatory dynamics of the Start transition into two independent modules, a size sensing module and a timing module, each of which is predominantly controlled by a different G1 cyclin.
引用
收藏
页码:947 / U12
页数:6
相关论文
共 30 条
[1]   Coherence and timing of cell cycle start examined at single-cell resolution [J].
Bean, JM ;
Siggia, ED ;
Cross, FR .
MOLECULAR CELL, 2006, 21 (01) :3-14
[2]   Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis [J].
Bi, E ;
Maddox, P ;
Lew, DJ ;
Salmon, ED ;
McMillan, JN ;
Yeh, E ;
Pringle, JR .
JOURNAL OF CELL BIOLOGY, 1998, 142 (05) :1301-1312
[3]   CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast [J].
Costanzo, M ;
Nishikawa, JL ;
Tang, XL ;
Millman, JS ;
Schub, O ;
Breitkreuz, K ;
Dewar, D ;
Rupes, I ;
Andrews, B ;
Tyers, M .
CELL, 2004, 117 (07) :899-913
[4]   STARTING THE CELL-CYCLE - WHATS THE POINT [J].
CROSS, FR .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (06) :790-797
[6]   Cln3 activates G1-specific transcription via phosphorylation of the SBF transcription bound repressor Whi5 [J].
de Bruin, RAM ;
McDonald, WH ;
Kalashnikova, TI ;
Yates, J ;
Wittenberg, C .
CELL, 2004, 117 (07) :887-898
[7]   ROLES AND REGULATION OF CLN-CDC28 KINASES AT THE START OF THE CELL-CYCLE OF SACCHAROMYCES-CEREVISIAE [J].
DIRICK, L ;
BOHM, T ;
NASMYTH, K .
EMBO JOURNAL, 1995, 14 (19) :4803-4813
[8]   CELL-CYCLE CONTROL BY TIMER AND SIZER IN CHLAMYDOMONAS [J].
DONNAN, L ;
JOHN, PCL .
NATURE, 1983, 304 (5927) :630-633
[9]   RATE OF MACROMOLECULAR-SYNTHESIS THROUGH CELL-CYCLE OF YEAST SACCHAROMYCES-CEREVISIAE [J].
ELLIOTT, SG ;
MCLAUGHLIN, CS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (09) :4384-4388
[10]   UNEQUAL DIVISION IN SACCHAROMYCES-CEREVISIAE AND ITS IMPLICATIONS FOR CONTROL OF CELL-DIVISION [J].
HARTWELL, LH ;
UNGER, MW .
JOURNAL OF CELL BIOLOGY, 1977, 75 (02) :422-435