Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform

被引:37
作者
Yu, L [1 ]
Lu, YY
Zeng, XM
Huang, MC
Chen, MZ
Huang, WD
Zhu, ZZ
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
关键词
D O I
10.1364/OL.23.001158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive the integral representation of a fractional Hankel transform (FRHT) from a fractional Fourier transform. Some basic properties of the FRHT such as Parseval's theorem and its optical implementation are discussed qualitatively. (C) 1998 Optical Society of America.
引用
收藏
页码:1158 / 1160
页数:3
相关论文
共 13 条
[1]  
ALEIVA T, 1994, J MOD OPTIC, V41, P1035
[2]   FRACTIONAL FOURIER-TRANSFORM USED FOR A LENS-DESIGN PROBLEM [J].
DORSCH, RG ;
LOHMANN, AW .
APPLIED OPTICS, 1995, 34 (20) :4111-4112
[3]   Performing fractional Fourier transform by one Fresnel diffraction and one lens [J].
Hua, JW ;
Liu, LR ;
Li, GQ .
OPTICS COMMUNICATIONS, 1997, 137 (1-3) :11-12
[4]   EXPRESSION OF THE KERNEL OF A FRACTIONAL FOURIER-TRANSFORM IN ELEMENTARY-FUNCTIONS [J].
KARASIK, YB .
OPTICS LETTERS, 1994, 19 (11) :769-770
[5]   IMAGE ROTATION, WIGNER ROTATION, AND THE FRACTIONAL FOURIER-TRANSFORM [J].
LOHMANN, AW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (10) :2181-2186
[6]  
MAGNUS W, 1954, FORMULAS THEOREMS FU
[7]   FRACTIONAL FOURIER-TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION .1. [J].
MENDLOVIC, D ;
OZAKTAS, HM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (09) :1875-1881
[8]   GRADED-INDEX FIBERS, WIGNER-DISTRIBUTION FUNCTIONS, AND THE FRACTIONAL FOURIER-TRANSFORM [J].
MENDLOVIC, D ;
OZAKTAS, HM ;
LOHMANN, AW .
APPLIED OPTICS, 1994, 33 (26) :6188-6193
[9]  
NAMIAS V, 1980, J I MATH APPL, V25, P241
[10]  
NAMIAS V, 1980, J I MATH APPL, V26, P187