PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1

被引:190
作者
Radu, A
Neubauer, V
Akagi, T
Hanafusa, H
Georgescu, MM
机构
[1] Univ Texas, MD Anderson Canc Ctr, Dept Neurooncol, Houston, TX 77030 USA
[2] Univ Texas, MD Anderson Canc Ctr, Dept Mol Genet, Houston, TX 77030 USA
[3] Mt Sinai Sch Med, Carl C Icahn Inst Gene Therapy & Mol Med, New York, NY USA
[4] Osaka Biosci Inst, Suita, Osaka 5650874, Japan
关键词
D O I
10.1128/MCB.23.17.6139-6149.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PTEN is a tumor suppressor frequently inactivated in brain, prostate, and uterine cancers that acts as a phosphatase on phosphatidylinositol-3,4,5-trisphosphate, antagonizing the activity of the phosphatidylinositol 3'-OH kinase. PTEN manifests its tumor suppressor function in most tumor cells by inducing G(1)-phase cell cycle arrest. To study the mechanism of cell cycle arrest, we established a tetracycline-inducible expression system for PTEN in cell lines lacking this gene. Expression of wild-type PTEN but not of mutant forms unable to dephosphorylate phosphoinositides reduced the expression of cyclin D1. Cyclin D1 reduction was accompanied by a marked decrease in endogenous retinoblastoma (Rb) protein phosphorylation on cyclin D/CDK4 specific sites, showing an early negative effect of PTEN on Rb inactivation. PTEN expression also prevented cyclin D1 from localizing to the nucleus during the G(1)- to S-phase cell cycle transition. The PTEN-induced localization defect and the cell growth arrest could be rescued by the expression of a nucleus-persistent mutant form of cyclin D1, indicating that an important effect of PTEN is at the level of nuclear availability of cyclin D1. Constitutively active Akt/PKB kinase counteracted the effect of PTEN on cyclin D1 translocation. The data are consistent with an oncogenesis model in which a lack of PTEN fuels the cell cycle by increasing the nuclear availability of cyclin D1 through the Akt/PKB pathway.
引用
收藏
页码:6139 / 6149
页数:11
相关论文
共 39 条
[1]   v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation [J].
Akagi, T ;
Shishido, T ;
Murata, K ;
Hanafusa, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7290-7295
[2]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[3]   Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation [J].
Alt, JR ;
Cleveland, JL ;
Hannink, M ;
Diehl, JA .
GENES & DEVELOPMENT, 2000, 14 (24) :3102-3114
[4]  
BALDREE LA, 1993, AM J KIDNEY DIS, V22, P1
[5]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[6]  
Cheyney IW, 1999, CANCER RES, V59, P2318
[7]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789
[8]   Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localization [J].
Diehl, JA ;
Cheng, MG ;
Roussel, MF ;
Sherr, CJ .
GENES & DEVELOPMENT, 1998, 12 (22) :3499-3511
[9]   A GENETIC MODEL FOR COLORECTAL TUMORIGENESIS [J].
FEARON, ER ;
VOGELSTEIN, B .
CELL, 1990, 61 (05) :759-767
[10]  
Furnari FB, 1998, CANCER RES, V58, P5002