Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions

被引:399
作者
Wang, D
Kreutzer, DA
Essigmann, JM
机构
[1] MIT, Div Toxicol, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
关键词
oxidative damage; mutagenicity; DNA repair; site-specific;
D O I
10.1016/S0027-5107(98)00066-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Oxidative DNA damage has been implicated in mutagenesis, carcinogenesis and aging. Endogenous cellular processes such as aerobic metabolism generate reactive oxygen species (ROS) that interact with DNA to form dozens of DNA lesions. If unrepaired, these lesions can exert a number of deleterious effects including the induction of mutations. In an effort to understand the genetic consequences of cellular oxidative damage, many laboratories have determined the patterns of mutations generated by the interaction of ROS with DNA. Compilation of these mutational spectra has revealed that GC --> AT transitions and GC --> TA transversions are the most commonly observed mutations resulting from oxidative damage to DNA. Since mutational spectra convey only the end result of a complex cascade of events, which includes formation of multiple adducts, repair processing, and polymerase errors, it is difficult if not impossible to assess the mutational specificity of individual DNA lesions directly from these spectra. This problem is especially complicated in the case of oxidative DNA damage owing to the multiplicity of lesions formed by a single damaging agent. The task of assigning specific features of mutational spectra to individual DNA lesions has been made possible with the advent of a technology to analyze the mutational properties of single defined adducts, in vitro and in vivo. At the same time, parallel progress in the discovery and cloning of repair enzymes has advanced understanding of the biochemical mechanisms by which cells excise DNA damage. This combination of tools has brought our understanding of DNA lesions to a new level of sophistication. In this review, we summarize the known properties of individual oxidative lesions in terms of their structure, mutagenicity and repairability. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 165 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   AN ABINITIO MOLECULAR-ORBITAL STUDY ON THE CHARACTERISTICS OF 8-HYDROXYGUANINE [J].
AIDA, M ;
NISHIMURA, S .
MUTATION RESEARCH, 1987, 192 (02) :83-89
[3]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[4]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[5]  
ARUOMA OI, 1989, J BIOL CHEM, V264, P13024
[6]   Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III [J].
Aspinwall, R ;
Rothwell, DG ;
RoldanArjona, T ;
Anselmino, C ;
Ward, CJ ;
Cheadle, JP ;
Sampson, JR ;
Lindahl, T ;
Harris, PC ;
Hickson, ID .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) :109-114
[7]   Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III [J].
Augeri, L ;
Lee, YM ;
Barton, AB ;
Doetsch, PW .
BIOCHEMISTRY, 1997, 36 (04) :721-729
[8]   SPECIFICITY OF IONIZING RADIATION-INDUCED MUTAGENESIS IN THE LAC REGION OF SINGLE-STRANDED PHAGE-M13 MP10 DNA [J].
AYAKI, H ;
HIGO, K ;
YAMAMOTO, O .
NUCLEIC ACIDS RESEARCH, 1986, 14 (12) :5013-5018
[9]   GENETIC-EFFECTS OF THYMINE GLYCOL - SITE-SPECIFIC MUTAGENESIS AND MOLECULAR MODELING STUDIES - (IONIZING-RADIATION OXIDATIVE DAMAGE HYDROXYL RADICALS) [J].
BASU, AK ;
LOECHLER, EL ;
LEADON, SA ;
ESSIGMANN, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7677-7681
[10]   REPAIR OF 8-HYDROXYGUANINE IN DNA BY MAMMALIAN N-METHYLPURINE-DNA GLYCOSYLASE [J].
BESSHO, T ;
ROY, R ;
YAMAMOTO, K ;
KASAI, H ;
NISHIMURA, S ;
TANO, K ;
MITRA, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :8901-8904