MEMS-tunable vertical-cavity SOAs

被引:33
作者
Cole, GD [1 ]
Björlin, ES
Chen, Q
Chan, CY
Wu, SM
Wang, CS
MacDonald, NC
Bowers, JE
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] VEECO Metrol LLC, Goleta, CA 93117 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[5] Appl Optoelect Inc, Sugar Land, TX 77478 USA
基金
美国国家科学基金会;
关键词
Fabry-Perot resonators; laser amplifiers; microelectromechanical devices; optical pumping; semiconductor optical amplifiers; surface-emitting lasers; tunable amplifiers; wafer bonding;
D O I
10.1109/JQE.2004.841496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the signal gain, wavelength tuning characteristics, saturation properties, and noise figure (NF) of MEMS-based widely tunable vertical-cavity semiconductor optical amplifiers (VCSOAs) for various optical cavity designs, and we compare the theoretical results to data generated from a number of experimental devices. Using general Fabry-Perot relationships, it is possible to model both the wavelength tuning characteristics and the peak signal gain of tunable vertical-cavity amplifiers, while a rate-equation analysis is used to describe the saturation output power and NF as a function of the VCSOA resonant wavelength. Additionally, the basic design principles for an integrated electrostatic actuator are outlined. It is found that MEMS-tunable VCSOAs follow many of the same design trends as fixed-wavelength devices. However, with tunable devices, the effects of varying mirror reflectance and varying single-pass gain associated with the MEMS-based tuning mechanism lead to changing amplifier properties over the wavelength span of the device.
引用
收藏
页码:390 / 407
页数:18
相关论文
共 41 条
[1]  
[Anonymous], VERTICAL CAVITY SURF
[2]   ANALYTIC EXPRESSIONS FOR THE REFLECTION DELAY, PENETRATION DEPTH, AND ABSORPTANCE OF QUARTER-WAVE DIELECTRIC MIRRORS [J].
BABIC, DI ;
CORZINE, SW .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (02) :514-524
[3]   Carrier-confined vertical-cavity semiconductor optical amplifiers for higher gain and efficiency [J].
Björlin, ES ;
Kimura, T ;
Bowers, JE .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (05) :1374-1385
[4]   Noise figure of vertical-cavity semiconductor optical amplifiers [J].
Björlin, ES ;
Bowers, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (01) :61-66
[5]   Optically preamplified receiver at 10 Gbit/s using vertical-cavity SOA [J].
Björlin, ES ;
Geske, J ;
Bowers, JE .
ELECTRONICS LETTERS, 2001, 37 (24) :1474-1475
[6]   Long wavelength vertical-cavity semiconductor optical amplifiers [J].
Björlin, ES ;
Riou, B ;
Abraham, P ;
Piprek, J ;
Chiu, YJ ;
Black, KA ;
Keating, A ;
Bowers, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (02) :274-281
[7]   Wafer fusion: Materials issues and device results [J].
Black, A ;
Hawkins, AR ;
Margalit, NM ;
Babic, DI ;
Holmes, AL ;
Chang, YL ;
Abraham, P ;
Bowers, JE ;
Hu, EL .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) :943-951
[8]   Vertical-cavity amplifying photonic switch at 1.5 mu m [J].
Bouche, N ;
Corbett, B ;
Kuszelewicz, R ;
Raj, R .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (08) :1035-1037
[9]  
Calvez S, 2003, ELECTRON LETT, V39, P100, DOI [10.1049/el:20030119, 10.1049/el.-20030119]
[10]  
CHEN EK, 1999, THESIS STANFORD U ST