Almost invariant sets in Chua's circuit

被引:41
作者
Dellnitz, M [1 ]
Junge, O [1 ]
机构
[1] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 11期
关键词
D O I
10.1142/S0218127497001655
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently multilevel subdivision techniques have been introduced in the numerical investigation of complicated dynamical behavior. We illustrate the applicability and efficiency of these methods by a detailed numerical study of Chua's circuit. In particular we will show that there exist two regions in phase space which are almost invariant in the sense that typical trajectories stay inside each of these sets on average for quite a long time.
引用
收藏
页码:2475 / 2485
页数:11
相关论文
共 10 条
[1]   A subdivision algorithm for the computation of unstable manifolds and global attractors [J].
Dellnitz, M ;
Hohmann, A .
NUMERISCHE MATHEMATIK, 1997, 75 (03) :293-317
[2]  
Dellnitz M, 1996, PROG NONLIN, V19, P449
[3]  
DELLNITZ M, 1997, IN PRESS CHAOS
[4]  
DELLNITZ M, 1996, UNPUB APPROXIMATION
[5]  
EIDENSCHINK M, 1995, THESIS GEORGIA I TEC
[6]   GLOBAL ANALYSIS BY CELL MAPPING [J].
Hsu, C. S. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :727-771
[7]   Chua's equation with cubic nonlinearity [J].
Huang, A ;
Pivka, L ;
Wu, CW ;
Franz, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A) :2175-2222
[8]   GENERAL RANDOM PERTURBATIONS OF HYPERBOLIC AND EXPANDING TRANSFORMATIONS [J].
KIFER, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :111-150
[9]  
KIFER Y, 1996, COMPUTATIONS DYNAMIC
[10]  
KREUZER E, 1987, NUMERISCHE UNTERSUCH